Switches

ON/OFF SWITCH 1-POLE 16 A 250 V~

ON/OFF SWITCH 1-POLE WITH LIGHT SIGNAL 16 A 250 V~

GROUP SWITCH 1-POLE 16 A 250 V~ Autom.-Off-Manual

CO SWITCH 1-POLE 16 A 250 V~

WS161		
1		
3	2	
3		
2		

Button, light signals and SCHUKO socket outlet

MOMENTARY-CONTACT SWITCH 16 A 250 V~

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

ı				
	1CO	WT161	55	12

LIGHT SIGNAL 230 V UC

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

Clear	RST230	73	12
Red	RSR230	73	12
Blue	RSB230	73	12
Green	RSG230	73	12
Yellow	RSY230	73	12

ON/OFF SWITCH 3-POLE 415 V~

Incoming circuit breaker for circuit distribution board, lockable in the "ON" or "OFF" position, maximum connection cross section 25 mm²

3 M

RATED CUR- RENT	ITEM NO.	WEIGHT g/EACH	PACKING UNIT
-----------------------	-------------	------------------	-----------------

63 A	AS63	200	4
100 A	AS100	200	4

SCHUKO SOCKET OUTLET (SCHUKO)

2.5 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

SD230	110	4

Installation relays / storage relays mechanical

INSTALLATION RELAY 16 A 250 V~ 1-pole 1NO

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

12 V~	IR01210	99	12
230 V~	IR23010	99	12

IR10		
1		
	A1	
\	1 	
	A2	
2		

INSTALLATION RELAY 16 A 250 V~ 2-pole 2NO

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT
	-	

230 V~ IR23020	104	12
----------------	-----	----

IR	.20
1	3
	A1
1	3
	A2

2 4

INSTALLATION RELAY 16 A 250 V~ 2-pole 1NO + 1NC

1 M

	ITEM NO.	WEIGHT g/EACH	PACKING UNIT

230 V~	IR23011	106	12

IR11		
1	3	
	A1	
1 1	3 1 4	
	A2	
2	4	

STORAGE RELAY sealable 16 A 250 V~ 1 CO contact

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

230 V~	SP2301W	85	12

SP2301W

	3
Α	.1
2	3 4
Α	.2
2	4

Installation relays / storage relays mechanical

Installation relay / Storage relay mechanical		
Technical data/type	IR	SP2301W
Contact material	AgSnO ₂	
Contact interval	3 mm / 2 mm	
nterval control connections / contact	> 6 mm	
Test voltage contact / contact contact / magnet system	2000 V 4000 V	
Nominal switching capacity AC 250 V, 400 V	16 A, 10 A / 10 A, 6 A	16 A / 250 V 3520 VA
ncandescent lamps and halogen lamp load 230 V	10 A (2300 W)	
Fluorescent lamp load in DUO switching	16 A (3500 W) / 10 A (2000 W)	
Fluorescent lamp load inductive or capacitive	10 A (1300 W)	
Electronic ballasts	I _{0N} 140 A 10 ms / 70 A 10 ms ¹⁾	
Fluorescent lamp load compensated in parallel	4 A (500 W)	
nductive load cos φ = 0.6 / 230 V AC	10 A (1300 W)	
High-pressure mercury lamp and metal halide lamp, uncompensated	500 W	
Contact load DC max.	100 W	
Mechanical endurance, change of position 10 ³ / h	>10 ⁶	>10 x 10 ⁸
Endurance with rated load, $\cos \varphi = 1$ and $10^3 / h$	>10 ⁵	
Endurance with incandescent lamps 1000 W and 10 ³ / h	>10 ⁵	
Endurance with rated load, $\cos \varphi = 0.6$ und 10^3 / h	>4 x 10 ⁴	
Switching frequency max.	10 ³ / h	10 ⁴ / h
Closing delay	10 - 20 ms	10 ms
Opening delay	5 - 15 ms	5 ms
Switch position display	per contact	Light emitting diode
Manual operation	yes	no
Switch-on duration	100% ²⁾	100%
Temperature at the installation location max. / min.	+50° / -5°C	+40 °C
Control voltage range	0.9 to 1.1 x U _n	0.95 to 1.06 x U _n
Coil power loss AC + DC ± 20 %	1- and 2-pole 2W	1.9 W
Fotal power loss when continually excited Rated voltage and rated contact load	1-pole 4W 2-pole 6W	1.9 W
Max. parallel capacitance (length) of the control line	0.06 μF (200 m)	
Max. induction voltage at the control inputs	0.2 x U _n	

Function description: IR = Installation relay SP = Storage relay

Type key e.g. installation relay Item No. IR23011

For electronic ballasts, a switch-on current 40 times more powerful is to be expected.
 Should several remote switches and installation relays be under continuous excitation, please make sure that there is sufficient ventilation in accordance with the power loss calculation and additionally that a ventilation interval of approx. ½ modules is observed.

Electronic control relays

CONTROL RELAYS

10 A / 250 V

1 CO contact
Universal control voltage
8 - 230 V

1 M

ITEM WEIGHT PACKING UNIT

8 to 230 V UC	58	1
---------------------	----	---

STU1W

A1	A2	
A1 1		
	2	
1	3	

Bistable relay contact

After installation, the mains voltage must first be applied to the relay so that the switching contacts can go into a defined state.

After about 2 seconds, the switched load can be connected to the mains.

Add States

CONTROL RELAYS

10 A / 250 V

2 CO contacts
Universal control voltage
8 - 230 V

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

	8 to 230 V UC	STU2W	74	1
--	---------------------	-------	----	---

STU2W

4	6	
A1	A2	
A1 	1 4 µ	
5	2	
1	3	

Bistable relay contact

After installation, the mains voltage must first be applied to the relay so that the switching contacts can go into a defined state.

After about 2 seconds, the switched load can be connected to the mains.

Electronic control relays

Electronic control relays		
Technical data/type	STU1W / STU2W	
Contacts		
Contact material / Contact interval	AgSnO ₂ / 0.5 mm	
Interval control connections / contact	< 6mm	
Interval control connections C1-C2 / contact		
Test voltage contact / contact	1000 V	
Test voltage control connections / contact	4000V	
Nominal switching capacity AC	10A / 250V	
Incandescent lamps and halogen lamp load 230 V for lamps with max. 200 W	1000 W	
Fluorescent lamp load in DUO switching	1000 W	
Fluorescent lamp load inductive or capacitive	1000 W	
Fluorescent lamp load compensated in parallel	4 A; 500 W	
High-pressure mercury lamp and metal halide lamp, uncompensated	-	
Electronic ballasts	I _{VV} max. 70A /10ms ¹⁾	
Inductive load cos ϕ = 0.6 / 230 V AC	5 A, 650 W	
Max. switching current DC1: 12 V / 24 V DC	8 A	
Endurance with rated load, cos ϕ = 1 or incandescent lamps 1,000 W at 100 / h	> 10 ⁵	
Endurance for rated load, cos ϕ = 0.6 und 100 / h	> 4 x 10 ⁴	
Switching frequency max.	10 ⁴ / h	
Closing delay	5 - 10 ms	
Opening delay	5 - 10 ms	
Switch position display	Light emitting diode	
Box terminal cross section	12 mm ²	
Maximum cross section of a conductor	6 mm ²	
Screw heads slotted/cross slot	pozidriv	
Protection cover (device side)	DIN EN 50274, VDE 0660-514 BGV A3	
Electronics		
Switch-on duration	100%	
Temperature at the installation location max. / min.	+50°C / -20°C	
Minimum command duration / control voltage area	50 ms / 0.9 to 1.1 x U _n	
Coil power loss AC+DC ± 20%	1U 0.5 W, 2U 0.8 W	
Control current	12 V UC: 90 mA ²⁾	
Solition current		
	230 V UC 20 mA ²⁾	
Max. parallel capacity (length) of the control line	0.06 μF (approx. 200 m)	

- Fulfilled EN 61000-6-3, EN 61000-6-1 and EN 60669 standards

 1) For electronic ballasts, a switch-on current 40 times more powerful is to be expected

 2) Control relays STU1W and STU2W are clocked. From this, currents of up to 1 A result in the μs range.

Mechanical remote switches

REMOTE SWITCH 16 A 250 V~ 1-pole 1NO

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

12 V~	FS01210	96	12
230 V~	FS23010	96	12

FS10	
1	
	A1
1 1	
	A2
2	

REMOTE SWITCH 16 A 250 V~ 2-pole 2NO

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

230 V~	FS23020	107	12

FS	 .2	0

1	3
	A1
1 3	
	A2
2	4

REMOTE SWITCH 16 A 250 V~ 2-pole 1NO + 1NC

230 V~ **FS23011**

1 M

NO. g/EACH UNIT			ITEM NO.	WEIGHT g/EACH	PACKING UNIT
-----------------	--	--	-------------	------------------	-----------------

107

12

F	S		1	1

1	3
	A1
1	3 1 4
	A2
2	4

Mechanical remote switches

Mechanical remote switches				
Technical data/type	FS			
Contact material	Ag Sn O ₂			
Contact interval	3 mm / 2 mm			
Interval control connections / contact	> 6 mm			
Test voltage contact / contact contact / magnet system	2000 V 4000 V			
Nominal switching capacity AC 250 V, 400 V	16 A, 10 A / 10 A, 6 A			
Incandescent lamps and halogen lamp load 230 V	10 A (2300 W)			
Fluorescent lamp load in DUO switching	16 A (3500 W) / 10 A (2000 W)			
Fluorescent lamp load inductive or capacitive	10 A (1300 W)			
Electronic ballasts	I _{on} 140 A 10 ms / 70 A 10 ms ¹⁾			
Fluorescent lamp load compensated in parallel	4 A (500 W)			
Inductive load $\cos \varphi = 0.6 / 230 \text{ V AC}$	10 A (1300 W)			
High-pressure mercury lamp and metal halide lamp, uncompensated	500 W			
Contact load DC max.	100 W			
Mechanical endurance, change of position 10 ³ / h	>10 ⁶			
Endurance with rated load, $\cos \varphi = 1$ und $10^3 / h$	>10 ⁵			
Endurance with incandescent lamps 1000 W and 10 ³ / h	>10 ⁵			
Endurance with rated load, $\cos \varphi = 0.6$ and $10^3 / h$	>4 x 10 ⁴			
Switching frequency max.	10 ³ / h			
Switch position display	per contact			
Manual operation	yes			
Switch-on duration	100% ²⁾			
Temperature at the installation location max. / min.	+50° / -5°C			
Control voltage range	0.9 to 1.1 x U _n			
Coil power loss AC + DC ± 20%	1- and 2-pole 5 - 6 W			
Total power loss when continually excited Rated voltage and rated contact load	1-pole 7 - 8 W 2-pole 9 - 10 W			
Max. parallel capacity (length) of the control line	0.06 μF (200 m)			
Max. induction voltage at the control inputs	0.2 x U _n			
Glow lamps parallel to the 230 V control buttons	5 mA			
With capacitor 1 µF / 250 V AC parallel to the coil	10 mA			
With capacitor 2.2 µF / 250 V AC parallel to the coil	15 mA			

For electronic ballasts, a switch-on current 40 times more powerful is to be expected.
 If several remote switches and installation relays are under continuous excitation, please make sure that there is sufficient ventilation in accordance with the power

Function description: FS = Remote switch Type key e.g. remote switch Item No. FS23011

Remote switch central electronic control

REMOTE SWITCH CENTRAL CONTROL 16 A / 250 V 2 NO floating Incandescent lamp load 2,000 W

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

8 to			
230 V	FZU20	70	12
UC			

FZU20 - Local Universal Control Voltage 8...230V UC

With additional control inputs, central on and central off for 8..230V UC, with galvanic separation from the local control input.

Very low switching noise. Glow lamp current from 110 V control voltage up to 50 mA in switch positions 1 to 3 and 5 to 7.

A rotary switch allows for setting various priorities.

These determine which other control inputs are blocked as long as a control input is continually excited.

This will then determine how the remote switch reacts during failure and subsequent return of mains voltage:

In switch positions 1 to 4 the switching position remains unaltered. Switch off is done in switch positions 5 to 8. Central commands pending will then be executed.

OFF = Permanently OFF

Positions 1 + 5 = No priority. Local button pressing is even possible with permanently excited central control inputs.

The final central command is carried out.

Positions 2 + 6 = Priority for central ON and OFF. Local button pressing is without any effect for the duration central OFF, however, has priority over central ON

Positions 3 + 7 = Priority for central ON and OFF. Local button pressing is without any effect for the duration central ON, however, has priority over central OFF.

Positions 4 + 8 = Priority for the permanently excited local button.

Central commands are not carried out for the duration. Glow lamp current is not permitted in these positions.

ON = Continuously ON

Switching example of electronic impulse switch for central control

Function rotary switch

ZE = no central control
ZA = only central control OFF
ZE = only central control ON
+ response delay
0, 1, 2 or 3 seconds

ZE ZA = central control ON and OFF + response delay

+ response delay 0, 1, 2 or 3 seconds

Electronic remote switch

Electronic remote switch					
Technical data/type	FZU20				
Contacts					
Contact material / Contact interval	AgSnO ₂ / 0.5 mm				
Interval control connections / contact	6 mm				
Test voltage C1-C2 or A1-A2 / contact	4000 V				
Test voltage contact / contact	4000 V				
Test voltage control connections / contact	4000 V				
Nominal switching capacity AC	16 A / 250 V				
Incandescent lamps and halogen lamp load 230 V 1)	2000 W				
Fluorescent lamp load in (conventional ballast) DUO switching	1000 VA				
Fluorescent lamp load in (conventional ballast) uncompensated or serially compensated	500 VA				
Compact fluorescent lamps with electronic ballast and energy-saving lamps (ESL)	I ₀₁₁ max. 70 A / 10 ms ²⁾				
Max. switching current DC1: 12 V / 24 V DC	8 A				
Endurance with rated load, cos ϕ = 1 and incandescent lamps 1,000 W for 100 / h	>10 ⁵				
Endurance with rated load, $\cos \varphi$ = 0.6 at 100 / h	>4 x 10 ⁴				
Switching frequency max.	10 ³ / h				
Maximum cross section of a conductor (3-fold terminal)	6 mm ² (4 mm ²)				
2 conductors with same cross-section (3-fold terminal)	2.5 mm ² (1.5 mm ²)				
Screw head	Slotted / cross slot pozidriv				
Protection cover (device side)	DIN EN 50274, VDE 00660-514 BGV A3				

Electronics	
Switch-on duration (also for central ON/OFF)	100%
Temperature at the installation location max. / min.	+50°C / -20°C
Stand-by loss (active power) 230 V	0,4 W
Stand-by loss (active power) 12 V / 24 V	0.03 W / 0,06 W
Control current Universal control voltage all control voltages (< 5 s) ± 20%	
Control current Universal control voltage 8/12/24/230 V (<10 s) ± 20%	0.1 / 0.1 / 0.2 /1 / (30) mA
Control current Central 8/12/24/230 V (<10 s) ± 20%	2 / 4 / 9 / 5 / (100) mA
Max. parallel capacitance (length) of the central control line for 230 V AC	0.3 μF (1000 m)
Max. parallel capacitance (length) of the central control line for 230 V AC	0.9 μF (3000 m)

Fulfilled EN 50081-1, EN 50082-2 and EN 60669 standards
Bistable relay as NOC. Wait for short automatic synchronisation after installation before applying the switched load to the mains.

1) For lamps with max. 150 W

2) For electronic ballasts, a switch-on current 40 times more powerful is to be expected

Touch dimmer

TOUCH DIMMER Universal control voltage 8 to 230 V UC, R, L and C loads 400 W Dimmable ESL 100 W Dimmable LED, 230 V 100 W

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

Electronic universal touch dimmer for R, L and C loads

Universal control voltage 8..230 V UC, galvanically separated from supply and switching voltage 230 V.

Short control commands switch on/off, permanent activation adjusts brightness up to the maximum value.

A brief interruption of the activation alters the dimming direction. The set level of brightness remains saved when switched off.

With switches for children's rooms:

When switching on and pressing the button for at least 1 second, the light will switch on at the lowest brightness level and slowly increase brightness, without altering the last brightness level saved.

With sleep function:

The lighting is dimmed from its current brightness and switches off when it receives a double impulse. The maximum dimming time of 60 minutes is dependent on the current brightness and can be shortened accordingly.

Switching-off during the dimming procedure is always possible by pressing the button briefly. Pressing the button for a longer time during the dimming procedure turns up the light and ends the sleep function.

Defined switch-off during electricity failure.
From 110 V control voltage, glow lamp current 30 mA
With the % - - rotary switch the minimum brightness
can be set (completely dimmed) e.g. for dimmable
energy-saving lamps.

The **dim speed rotary switch** can be used to set the dimming speed. At the same time the duration of the soft ON and soft OFF is altered. The **+ESL** settings take into consideration the special conditions for dimmable energy-saving lamps: The switching-on procedure is optimised and the dimming rate is altered logorithmically. The children's room switch is not possible in these settings and wound (inductive) transformers are not allowed to be dimmed

1,2-3,4 LED ESL - 6,7 % % min max dim 2 min OFF

Function

Rotary switch

Memory is switched off in the **–ESL** setting. This can be advantageous with ESL, since cold ESL require a higher minimum brightness than might be stored in the memory with warm ESL.

The **LED** settings take into account the special conditions for dimmable 230V LED lamps. Different dimming curves can be selected. In these settings, no wound (inductive) transformers may be dimmed.

Automatic electronic overload protection and thermal overload switch-off.

L loads (inductive loads, e.g. wound transformers) and C loads (capacitor loads, e.g. electronic transformers) must not be mixed.
L and C loads can be mixed as desired with R loads (ohmic loads, e.g. 230 V incandescent and halogen lamps).

Technical data for dimmerTDU500 1)				
Incandescent lamps 230 V (R)	400 W			
Halogen lamps 230 V (R)	400 W			
Inductive transformers (L)	400 W ^{2) 3)}			
Electronic transformers (C)	400 W ^{2) 3)}			
Dimmable energy-saving lamps ESL	100 W ⁴⁾			
Dimmable LED 230 V	100 W			
Temperature at the installation location max. / min.	+50°C / -20°C ⁵⁾			
Control voltage area	0.9 bis 1.1 x U _n			
Constant current supply	12 mA			

The parallel operation of inductive (wound) and capacitive (electronic) transformers is not allowed!

- 1) For loads greater than 300 W, a ventilation interval of 1/2 module is to be maintained to devices mounted next to each other.
- 2) A maximum of two inductive (wound) transformers are allowed per universal dimmer switch and only the same types may be used; in addition, secondary-side idling is not allowed. Otherwise the universal

dimmer switch may be destroyed!

Therefore no secondary-side load switch-off allowed.

- 3) When calculating loads, 20% loss for inductive (wound) transformers and 5% loss for capacitive (electronic) transformers must be taken into account in addition to the lamp load.
- 4) In the ESL settings, no inductive (wound) transformers may be dimmed
- 5) Influences the maximum switching capacity.

Connection example

Load shedding relays

LOAD SHEDDING RELAYS sealable for electronically and pneumatically regulated flow heaters

1 M

	ITEM NO.	WEIGHT g/EACH	PACKING UNIT
6,7-39 A	LRU39	90	12

Load shedding relays				
Technical data / type	LRU39 for electronic and pneumatic flow heaters			
Field coil				
Rated current area AC	6.7 39 A	Response current AC	< 5.3 A	
Rated power for 230 V AC	1.5 9 KW / 230 V~	Max. continuous current AC	43 A	
Rated power for 230 / 400 V AC	4.6 27 KW / 400 V~	Constant thermal load capacity 40°C	2.5 W	
Operating / rated power	0.5 4 VA	Connection terminal single wire	2.5 mm ² – 16 mm ²	
		Connection terminal multiple wire	2.5 mm ² – 16 mm ²	
Relay contact				
Contact	1 NC	Max. electrical switching frequency / h	approx. 1,800 switching cycles / h	
Rated contact current for 250 V AC	1 A	Max. ambient temperature	40°C	
Contact material	Hard silver gold-flashed	Response time / release time	10 20 ms / 20 30 ms	
Max. switching voltage AC	400 V	Volume resistance	approx. 3 mΩ	
Max. switching capacity	250 VA	Test voltage contact / coil AC	2.5 KV	
Max. switch-on peak current	5 A	Isolation group acc. to VDE 0110	C / 250 V	
Electric endurance with rated load	>100,000 switching cycles	Protection type housing	IP40	
Mechanical endurance	approx. 1 million switching cycles	Connection terminal single wire	0.75 mm ² – 4 mm ²	
Switch-on duration	100%	Connection terminal multiple wire	0.75 mm ² – 4 mm ²	

Twilight switch

TWILIGHT SWITCH WITH SEPARATE LIGHT COLLECTOR 230 V~, 50 ... 60 Hz 16 A, 1 CO contact

2 M ITEM WEIGHT PACKING UNIT DS2301W 230 1

Twilight switch DS2301W		
2 -100 Lux 2 -1000 Lux 2 -10 000 Lux		
8 sec.		
38 sec.		
AgCdO		
< 3 mm		
5 mm		
1 KV 4 KV		
16 A / 250 V cos φ =1		
2300 W		
3 A / 250 V		
5 x 10 ⁷		
10 ⁵		
25 x 10 ³		
75 x 10 ³		
LED red		
LED green		
100%		
0°C to 55°C		
2.2 W		
IP20		
IP65		
100 m		

Wiring diagram: Twilight switch with separate light collector

Time relays and multi-function time relays

MULTI-FUNCTION TIME RELAYS

16 functions 1 CO contact 10 A / 250 V~ Time range 0.1 sec. - 40 hrs

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

	8 V to 230V UC	MRU1W	75	10
--	----------------------	-------	----	----

TIME RELAYS

1 CO contact 10 A / 250 V_{\sim} Time range 0.1 sec. - 40 hrs

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

8 V to 230V	AVU1W	75	1
UC	RVU1W	75	1

Function description MRU1W

Stand-by loss only 0.1 Watt

Depending on the connection for the electricity supply to terminal B1 or B2, **two different function levels can be selected:**

Function level 1 for connection of electricity supply to B1-A2

RV = Release delay **AV** = Response delay

TI = Clock generator starting with impulse
TP = Clock generator starting with pause
IA = Impulse-controlled response delay

EW = Passing make contact

AW = Passing break contact
ARV = Response and release delay

ON = Continuously ON
OFF = Permanently OFF

Function level 2 for connection to electricity supply to B2-A2

ER = Relay function

EAW = Passing make and break contact

Er S = Impulse switch function

IF = Impulse former

ARV+ = Additive response and release delay

ESV = Impulse switch with release delay
and Pre-warning of switch-off

AV+ = Additive response delay

SRV = Impulse switch with release delay

ON = Continuously ON
OFF = Permanently OFF

The time base T

is set for latching rotary switches [T]. There is a choice between the base values 0.1 seconds, 0.5 seconds, 2 seconds, 5 seconds, 1 minute, 2 minutes, 5 minutes, 1 hour, 2 hours and 4 hours. The total time is calculated from the time base multiplied by the multiplier.

The multiplier x T

is set with the latching rotary switch [xT] and is between 1 and 10. This makes it possible to set times between 0.1 seconds (time base 0.1 seconds and multiplier 1) and 40 hours (time base 4 hours and multiplier 10).

Light emitting diode

under the large rotary switch provides information about the contact position during the time period. It blinks as long as NOC 15 -18 is open (15 -16 closed) and glows continuously as long as NOC 15 -18 is closed (15-16 open).

+B1	+B2	
+A1	-A2	
15 		
	16	
15	18	

Time relays and multi-function time relays · Function descriptions

RV = Release delay

(Delay in switching off)

When applying control voltage, the NOC changes to 15-18. With the interruption of the control voltage, the time period begins and at its end the NOC returns to its rest position. Can be reset during the time period.

AW = Passing break contact relay

When the control voltage is interrupted, the NOC changes to 15-18 and returns after the impulse time has elapsed. If the control voltage is applied during the impulse time, the NOC immediately reverts to its rest position and the residual time is deleted.

AV = Response delay

(Delay when switching on)

With the application of the control voltage, the time period begins and at its end the NOC changes to 15–18. After an interruption, the time period starts again.

ARV = Response and release delay

When the control voltage is applied, the timing period is started; at its end the NOC changes to 15–18. If the control voltage is interrupted after this, another timing period is started; at its end the NOC returns to the rest position. This release delay is identical to the response delay. After an interruption of the response delay, the time period begins again.

TI = Clock generator starting with impulse

As long as the control voltage is applied, the NOC closes and opens. For MRU1W the switching time in both directions is identical and corresponds to the time set. For TIUMW both times can be set separately. When the control voltage is applied, the NOC immediately changes to 15-18.

EAW = Passing make contact relay and passing break contact relay

When the control voltage is applied and interrupted, the NOC changes to 15–18 and returns after the set impulse time has elapsed.

TP = Clock generator starting with pause

(Flashing relay)

Function descriptions same as TI, except that when the control voltage is applied, the contact does not change to 15–18 but rather first remains at 15-16 or open.

IF = Impulse former

When the control voltage is applied, the NOC changes to 15-18 for the time set. Further activations are only evaluated after the set time has elapsed.

IA = Impulse-controlled response delay

With the start of a control pulse from 20 ms, the timing period t1 starts; at its end, the NOC changes to 15-18 for the time t2 (=1 second) (e.g. for automatic door openers). If t1 is set to the shortest time of 0.1 seconds, IA operates as an impulse former, for which t2 elapses, independent of the control signal's duration (min. 150ms).

ARV+ = Additive response and release delay

Same function as the ARV, but after an interruption of the response delay, the elapsed time remains stored.

ESV = Impulse switch with release delay and pre-warning of switch-off

Function as SRV. Also with pre-warning of switch-off: approx. 30 sec. before time elapses, the light flickers 3 times in shorter and shorter periods.

EW = Passing make contact relay

With the application of the control voltage, the NOC changes to 15–18 and returns after the impulse time. If the control voltage is removed during the impulse time, the NOC immediately returns to the rest position and the remaining time is deleted.

AV+ = Additive response delay

Same function as the AV, but after an interruption, the time already elapsed remains stored.

SRV = Impulse switch with release delay

The NOC switches back and forth with control impulses from 50 ms. In contact position 15-18, the device automatically switches to the rest position after the delay time has elapsed.

Time relays and multi-function relays

Time relays and multi-function relays	Time relays and multi-function relays			
Technical data / type	MRU1W / AVU1W / RVU1W			
Switch-on duration	100%			
Temperature at the installation location max. / min.	+50°C / -20°C			
Contact material / contact interval	AgSnO ₂ / 0.5 mm			
Interval control connections / contact	3 mm			
Test voltage contact / contact	1000 V			
Test voltage control connections / contact	2000 V			
Nominal switching capacity AC	10 A / 250 V			
Incandescent lamps and fluorescent lamps, inductive or capacitive	1000 W			
Fluorescent lamps in DUO switching	1000 W			
Fluorescent lamps compensated in parallel	500 W			
Electronic ballasts	I _{0n} max 70 A / 10ms ²⁾			
Inductive load $\cos \varphi = 0.6 / 230 \text{ V AC}$	650 W			
Max. switching current DC 1 (not for NP type): 12 V / 24 V DC	8 A			
Endurance with rated load, $\cos \phi$ = 1 and incandescent lamps 1000 W for 100 / h	>10 ⁵			
Endurance with rated load, $\cos \varphi = 0.6$ bei 100 / h	>4 x 10 ⁴			
Temperature dependency	<0,2% each °C			
Repetition accuracy at 25°C	± 0,1%			
Setting accuracy from 1 minute	± 0,2%			
Control voltage dependency between 0.8 and 1.1 x U _n	none			
Bridging time during mains failures (then total reset)	min. 0.2 seconds			
Control current 12 V / 230 V ± 20%	0.05 / 0.9 mA			
Control current 12 V DC / 230 V DC ± 20%	0.09 / 1.7 mA			
Power consumption continuous electricity supply 12 V / 230 V UC relay OFF	0.02 / 0.4 W			
Power consumption continuous electricity supply 12 V / 230 V UC relay ON	0.3 / 1.0 W ³⁾			
Max. parallel capacity (length) of the control lines for 230 V	0.2 μF (approx. 600 m)			
Protection cover (device side)	DIN EN 50274, VDE 0660-514 BGV A3			
Box terminal cross section	12 mm ²			
Maximum cross section of a conductor	6 mm ²			
Screw head	Slotted / cross slot pozidriv			

Meets VDE0435, EN 61000-6-3, EN 61000-6-1 and EN 60669 standards

1) Only with constant mains voltage >110 V and only when "relay on" for more than 60 minutes, is it necessary to maintain a ventilation interval of 1/2 module on both sides. If required, use the distance device. For 230 V AC, a capacitor 0.33 μF / 250 V in series with B1 is also sufficient.

2) For electronic ballasts, a switch-on current 40 times more powerful is to be expected.

Mains monitoring

MAINS MONITORING NW1 NWA1 asymmetrical monitoring UAB 154 V, UAN 198 V

2 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

1NO +	NW1	98	1
1NC	NWA1	98	1

MAINS MONITORING

NW2 NWA2 asymmetrical monitoring UAB 187 V, UAN 210 V

2 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

1S + 1Ö	NW2	98	1
13 + 10	NWA2	98	1

Mains monitoring				
Technical data / type		NW1 / NW2	NWA1 / NWA2	
Mains connection		1 - 3-phase 230 / 400 V	3-phase 230 / 400 V	
Operational voltage		via L1-N 230	V AC	
Frequency		4565 H	Z	
Power consumption		5.5 VA		
Response / drop delay		0.150.5 s	ec.	
Input pulse amplitude max	. 6 ms 20 ms	2.5 KV 1.0 KV		
Asymmetrical monitoring		none	10%	
Back-up fuse		no / device inherently stable		
Relays				
Contact material		Ag Ni 0.15 + HV		
Contact interval		> 0.35		
Interval control connection	s / contact	15 mm		
Rated insulation voltage	contact / contact contact / magnet system	1000 V _{eff} 4 000 V _{eff}		
Rated switching capacity		2 000 VA		
Contact load DC max. (A)	24 V	8 A		
	60 V	1.8 A	1.8 A	
	110 V	0.4 A		
	220 V	0.3 A		
Minimum contact load		10 mA / 12	V	
Mechanical endurance		3 x 10 ⁷		
Endurance with rated load,	cos φ =1	100 000		
Endurance with rated load	cos φ = 0.4	80 000		
Switching frequency max.		3 000 / h		
Switch position display		LED		
Switch-on duration / switch	ing safety	100%		
Temperature at the installa	tion location max. / min.	-40°C / + 70	l°C	
Total power loss during cor	nstant excitation	0.55 VA		

Installation contactors

INSTALLATION CONTACTOR 20 A / 230 V AC 2-pole Control voltage 230 V AC

1 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

2NO	IS2020	200	12
1NO 1NC	IS2011	200	12

INSTALLATION CONTACTOR 25 A 230 / 400 V AC

4-pole Control voltage 230 V AC

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

4NO	IS2540	280	6
2NO 2NC	IS2522	280	6
3NO 1NC	IS2531	280	6

INSTALLATION CONTACTOR 40 A and 63 A 230 / 400 V AC 4-pole · Control voltage 230 V AC

3 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

4NO	IS4040	450	4
4NO	IS6340	450	4

AUXILIARY CONTACT

Continuous thermal current $I_{th} = 6 A$ Rated operating current le with AC-15 for U_e 240 V AC 3 A

415 V AC 2 A 440 V AC 1,6 A

½ **M**

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

1NO 1NC	ISH11	23	3

SEALING CAP

		ITEM NO.	WEIGHT g/EACH	PACKING UNIT
--	--	-------------	------------------	-----------------

2 M	ISP2	2	10
3 M	ISP3	3	10

DISTANCE DEVICE 9MM

	ITEM NO.	WEIGHT g/EACH	PACKING UNIT
½ M	ISD	13	10

We recommend the use of distance devices at ambient temperatures higher than 40° $\mbox{\em C}$

Installation contactors

	IS20	IS25	IS40	IS63.
V AC	440	440	440	440
V AC	440	440	440	440
AC1, AC3 1 / h	300	300	600	600
S x 10 ⁶	1	1	1	1
at 60°C A	20	25	40	63
	•		-	0.1
W	2	2	3	7
			27	30
				8
	<u>-</u>			-
kW	-	2.5	12.5	8.5 15
S x 10 ⁶	-	0.15	0.15	0.15
Switching VA	7 - 9	14 - 18	33 - 45	33 - 4
Stop VA	2.2 - 4.2	4.4 - 8.4	7	7
W	0.8 - 1.6	1.6 - 3.2	2.6	2.6
	0.05 1.1	0.05 1.1	0.05 1.1	0.85 -
	0.00	0.00 1.1	0.00	0.00
1.4.0).44	0.5	0.5	00	
				80 11 - 1
				6 - 13
	*	-		10 - 1
Are delation ins	10 13	10 13	10 13	10 1
mm ²	1.5 - 10	1.5 - 10	2.5 - 25	2.5 - 2
mm ²	1.5 - 6	1.5 - 6	2.5 - 16	2.5 - 1
mm ²	1.5 - 6	1.5 - 6	2.5 - 16	2.5 - 1
	1	1	1	1
mm ²	0.75 - 2.5	0.75 - 2.5	0.75 - 2.5	0.75 - 2
mm ²	0.5 - 2.5	0.5 - 2.5	0.5 - 2.5	0.5 - 2
mm ²	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1
	1	1	1	1
V AC	440			
A A	10 6			
**				
Α	3			
Ä	2			
А	1.6			
A	2			
A	0.4			
	Λ1			
А	0.1			
	0.1			
	AC1, AC3 1 / h S x 106 at 60 °C A S x 106 W motors A kW kW kW S x 106 Switching VA Stop VA W Closing delay ms Opening delay ms Arc duration ms mm² mm² mm² mm² mm² mm² mm² mm² Ac duration ms V AC A A A A A A A A A	AC1, AC3 1 / h S x 106 1 at 60 °C A S x 106 0.1 W 2 motors A - kW - kW - S x 106 Switching VA 7 - 9 Stop VA 2.2 - 4.2 W 0.8 - 1.6 QL (gG) / A 35 Closing delay ms 7 - 16 Opening delay ms 6 - 12 Arc duration ms 10 - 15 mm²	AC1, AC3 1 / h S x 106 AC1, AC3 1 / h S x 106 AC2 AC3 AC3 1 / h AC4 1 / h AC4 1 / h AC5 1 /	AC1, AC3 1 / h S x 106 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DIN-RAIL PANEL PRODUCTS
Installation contactor IS – Switching of lamp loads

LAMP TYPE	OUTPUT Watt	CURRENT	CAPACITOR	MAX. NUMBER OF LAMPS PER CONDUCTING PATH FOR 230 V 50 HZ AND MAX. 60 °C			PATH
	watt	In / A	μF	IS20	IS25	IS40	IS63
	60	0,27	-	22	28	92	129
	100	0,45	-	13	17	55	77
	200	0,91	-	7	8	27	38
Incandescent lamps	300	1,36	-	4	5	19	26
	500	2,27	-	3	3	11	16
	1000	4,5	-	1	1	6	8
	11	0.16	1,3	60	75	210	310
	18	0.37	2,7	25	30	90	140
Fluorescent lamps	24	0.35	2,5	25	30	90	140
Uncompensated or	36	0.43	3,4	20	25	70	140
Serially compensated	58	0.67	5,3	14	17	45	70
	65	0.67	5,3	13	16	40	65
	85	0.8	5,3	11	14	35	60
	11	0.07	-	2 x 100	2 x 110	2 x 220	2 x 250
	18	0.11	-	2 x 50	2 x 55	2 x 130	2 x 200
Eluoroscent la mara	24	0.14	-	2 x 40	2 x 44	2 x 110	2 x 160
Fluorescent lamps Duo switching	36	0.22	-	2 x 30	2 x 33	2 x 70	2 x 100
Due ownering	58	0.35	-	2 x 20	2 x 22	2 x 45	2 x 70
	65	0.35	-	2 x 15	2 x 16	2 x 40	2 x 60
	85	0.47	-	2 x 10	2 x 11	2 x 30	2 x 40
	11	0.09	2	30	43	67	107
	18	0.13	2	20	32	50	80
Fluorescent lamps	24	0.16	3	15	32	50	80
Parallel compensation	36	0.27	4	10	32	50	80
	58	0.45	7	6	18	36	46
	65	0.5	7	5	18	36	46
	85	0.6	8	4	18	33	44
	18	0.09	-	40	40	100	150
	36	0.16	-	20	20	50	75
Fluorescent lamps	58	0.25	-	15	15	30	55
with electronic ballast	2 x 18	0.17	-	2 x 20	2 x 20	2 x 50	2 x 60
	2 x 36	0.32	-	2 x 10	2 x 10	2 x 25	2 x 30
	2 x 58	0.49	-	2 x 7	2 x 7	2 x 15	2 x 20
	20	0.09	-	40	52	110	174
	50	0.22	-	20	24	50	80
Transformers	75	0.33	-	13	16	35	54
for low-voltage halogen lamps	100	0.43	-	10	12	27	43
iamps	150 200	0.65	-	5	9 5	19 14	29
	300	1.3	-	3	4	9	14
	50	0.61	-	16	21	38	55
	80	0.8	-	12	16	29	40
Mercury high-pressure lamps	125	1.15	-	8	11	29	28
uncompensated e.g.	250	2.15	-	4	6	11	15
high-pressure mercury lamp	400	3.25	-	3	4	7	10
and metal halide lamp	700	5.4	-	1	2	4	6
	1000	7.5	-	1	1	3	4
	50	0.28	7	7	18	36	50
	80	0.28	8	5	16	31	44
Mercury high-pressure lamps	125	0.65	10	3	13	25	35
compensated e.g.	250	1.22	18	2	7	14	19
high-pressure mercury lamp	400	1.95	25	1	5	10	14
and metal halide lamp	700	3.45	45	1	3	6	8
	,,,,	4.8	-10	-	2	-	9

DIN-RAIL PANEL PRODUCTS
Installation contactor IS – Switching of lamp loads

LAMP TYPE	OUTPUT Watt	CURRENT In / A	CAPACITOR µ F	MA	X. NUMBER OF LAMPS FOR 230 V 50 HZ	K. NUMBER OF LAMPS PER CONDUCTING PATH FOR 230 V 50 HZ AND MAX. 60°C	
	11411	1117.4	ļ .	IS20	IS25	IS40	IS63
	25	0.52		22	24	F7	CF.
	35	0.53	-	22	24	57	65
	70	1	-	12	14	30	35
Metal halogen lamps	150	1.8	-	6	8	17	18
uncompensated e.g.	250	3	-	4	5	10	12
high-pressure mercury lamp	400	3.5	-	3	4	8	10
and metal halide lamp, CDM	1000	9.5	-	1	1	3	4
	2 000	16.5	-	-	-	2	2
	2 000 / 400 V	10.5	-	-	-	2	2
	3 500 / 400 V	18	-	-	-	1	1
	35	0.25	6	8	21	42	58
	70	0.45	12	4	11	21	29
	150	0.75	20	2	7	13	18
Metal halogen lamps compensated e.g.	250	1.5	33	1	4	9	11
high-pressure mercury lamp	400	2.1	35	1	4	9	10
and metal halide lamp, CDM	1000	5.8	95	-	1	3	4
	2 000	11.5	148	-	-	2	2
	2 000 / 400 V	6.6	58	-	-	3	4
	3 500 / 400 V	11.6	100	-	-	2	3
Metal halogen lamps	20	0.1	Integrated	9	9	18	20
with electronic ballast	35	0.2	Integrated	6	6	11	13
(e.g. PCI)	70	0.36	Integrated	5	5	10	12
50 -125 x I _n lamps for 0.6 ms	150	0.7	Integrated	4	4	8	10
	35	1.5	-	7	9	22	30
	55	1.5	-	7	9	22	30
Low pressure	90	2.4	-	4	6	13	19
sodium vapour lamps	135	3.3	-	3	4	10	14
uncompensated	150	3.3	-	3	4	10	14
	180	3.3	-	3	4	10	14
	200	3.3	-	3	4	10	14
	35	0.31	20	3	6	15	18
	55	0.42	20	2	6	15	18
Low pressure	90	0.63	30	1	4	10	12
sodium vapour lamps	135	0.94	45	1	3	7	8
compensated	150	1	40	1	3	8	9
	180	1.16	40	1	3	8	9
	200	1.32	25	-	-	10	12
	150	1.8	-	5	8	17	22
Uiah nuossuus	250	3	-	4	5	10	13
High pressure sodium vapour lamps	330	3.7	-	3	4	8	10
uncompensated	400	4.7	-	2	3	6	8
	1000	10.3	-	1	1	3	4
	150	0.83	20	2	7	20	25
	250	1.5	33	1	4	12	15
High pressure sodium vapour lamps	330	2	40	1	3	10	13
compensated				1		8	
	400	2.4	48		2		12
	1000	6.3	106	-	1	4	6
High pressure sodium	20	0.1	Integrated	9	9	18	20
vapour lamps Sodium vapour lamps with	35	0.2	Integrated	6	6	11	13
electronic ballast (e.g. PCI)	70	0.36	Integrated	5	5	10	12
50 - 125 x I _n lamp for 0.6 ms	150	0.7	Integrated	4	4	8	10

Stairway light time switches

STAIRWAY LIGHT TIME SWITCHES WITH PRE-WARNING OF SWITCH-OFF 230 V AC 50 / 60 Hz 16 A 1 NO (not floating) Time range 1 to 30 minutes Incandescent lamp load 2300 W Glow lamp current 50 mA

1 M			
	ITEM NO.	WEIGHT g/EACH	PACKING UNIT
	TZA2301	76	12

TZA2301 Stairway light time switches Stand-by loss only 0.5 Watt.

Contact circuit in zero crossing to protect the contacts and lamps. This is especially good for increasing the endurance for energy-saving lamps. Very low switching noise.

Exact time settings from 1 to 30 minutes with minute scale. Control, supply and switching voltage 230 V. Also with galvanically separated universal control voltage 8...230 V UC. Glow lamp current up to 50 mA, independent of the glow lamp ignition voltage.

Own continuous light switch () with large rotary switch.

When the pre-warning switch-off is activated \(\square\), the light flickers approx. 30 seconds before time elapses and 3 times in total in shorter and shorter periods.

When the continuous light button is activated, 🛱 pressing the button for longer than one second can activate the continuous light, which is automatically switched off after 60 minutes or can be switched off by pressing for longer than 2 seconds. If the continuous light button and the pre-warning switch-off are activated, then the pre-warning of switch-off only activates after switching off the continuous light. If energy-saving lamps are switched (ESL) completely or partly, then set the pre-warning of switch-off and the continuous light button

Within 1 second after switch-on or subsequent switch-on, the time can be **extended** (pumped) with the TLZ functions by briefly pressing the button three times. Every touch adds one time to the set time.

on the right ESL side of the rotary switch.

Multifunctional: Can switch between the **FS** (impulse relay), ST (relay) and ESV (impulse relay with release delay) functions. The ESV function, the times (t) settable with the rotary switch above correspond to the following values: 1 = 2 min, 2 = 5 min, 3 = 10 min, 4 = 15 min, 6 = 25 min, 8 = 35 min, 10 = 45 min, 12 = 60 min,20 = 90 min, 30 = 120 min.

After the set delay time has elapsed, automatic switch-off is carried out if the manual OFF command was not given. Pre-warning of switch-off and the continuous light button can be connected for ESV. Forgotten continuous light is switched off after 2 hours.

Connection examples

3-conductor circuit with subsequent switching 4-condictor circuit, with attic lighting, with subsequent switching

With double connections for button and lamp so that they can be connected above and below or only below.

t

TLZ/ESV +**\U**:\$

Time setting

TLZ / ESL t = time 1 to 30 minutes**FSV** t = time 2 to 120 minutes

Function selection switch TLZ / ESV and ESL

¬ г -

= Pre-warning of switch-off

= Continuous light button

__ = Continuous light button + pre-warning of switch-off

= Continuous light switch

Stairway light time switches

Technical data stairway light time switch	TZA2301 *
Contacts	
Contact material / contact interval	AgSnO ₂ / 0.5mm
Interval control connections / contact	3 mm
Interval A1-A2 / contact	6 mm
Test voltage control connections / contact	2 000 V
Test voltage A1-A2 / contact	4000 V
Nominal switching capacity AC	16 A / 250 V
Incandescent lamps and halogen lamp load 230 V 1)	2 300 W
Fluorescent lamp load (conventional ballast) In DUO switching or uncompensated	1 000 VA
Fluorescent lamp load (conventional ballast) with parallel compensation or with electronic ballast	500 VA
Compact fluorescent lamps with electronic ballast And energy-saving lamps ESL	15 x 7 W 10 x 20 W
Endurance with rated load, $\cos \phi$ = 1 or for incandescent lamps 1000 W for 100 / h	>10 ⁵
Endurance with rated load, $\cos \phi$ = 0.6 to 100 / h	>4 x 10 ⁴
Switching frequency max.	10 ³ / h
Box terminal cross sections	12 mm ²
Maximum cross section of a conductor	6 mm ²
Screw head	Slotted / cross slot, pozidriv slot
Protection cover (device side)	VDE 0106 part 100

Electronics					
Switch-on duration	100%				
Temperature at the installation location max. / min.	+50 °C / -20 °C				
Stand-by loss (active power)	0.5 W				
Control current locally at 230 V (<10 s) ± 20%	5 (100) mA				
Max. parallel capacity (approx. length) of the individual control lines for 230 V AC	0.06 μF (approx. 200 m)				

Fulfilled EN 61000-6-3, EN 61000-6-1 and EN 60 669 standards With pre-warning of switch-off acc. to DIN 18015-2

^{*} Bistable relay as NOC. Wait for automatic synchronisation after installation before applying the switched load to the mains.

1) For lamps with max. 150 W.

Synchronised / Quartz time switch

SYNCHRONISED TIME SWITCH 230 V~ 50 Hz 16 A, 1 CO contact without power reserve

3 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

24 h	AZ1TS	200	1
7Tage	AZ7TS	200	1

QUARTZ TIME SWITCH

230 V~ 50 / 60 Hz 16 A, 1 CO contact Power reserve 150 h

3 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

24 h	AZ1TQ	200	1
7Tage	AZ7TQ	200	1

Technical data / type	AZ1TS / AZ7TS	AZ1TQ / AZ7TQ			
Operating voltage	220 - 240 V AC	230 V AC / 130 V DC			
Frequency	50 Hz	45 - 60 Hz			
Power consumption	appro	x. 1 VA			
Power reserve	-	150 h battery			
Charge time	-	70 h			
Accuracy	Network synchronisation	± 2.5 sec. / day at 20 °C			
Minimum switch-on duration · Daily program · Weekly program		min h			
Programming Daily program Weekly program		30 min 3 h			
Manual switch	Continuous OFF / clock op	erations / continuously ON			
Contacts	1 CO c	ontact			
Contact power $\cdot \text{ with ohmic load cos. } \phi = 1 \\ \cdot \text{ with inductive load cos. } \phi = 0.6$	16 A / 25 4 A / 25				
For incandescent lamps	135	0 W			
Temperature range	-25 °C to	o +55 °C			
Protection class	II acc. to E	N 60335-1			
Degree of protection	IP20 acc. to	EN 60529			

Digital timer

DIGITAL TIMER 230 V~, 50/60 Hz, 16 A 1 channel, 50 storage places 2 channels, 50 storage places Program 24 h, 7 days

2 M

ITEM WEIGHT PACKI	
-------------------	--

1 channel	DZ201	170	1
2 channels	DZ302	170	1

Technical data / Typ	DZ201	DZ302
Operating voltage	220-240 V / 50-60 Hz	
Power input up to 230 V~ (AC)	5 VA	
Switching capacity AC Ohmic load (VDE, IEC) Inductive load cos. φ 0,6 Incandescent lamp load	16 A / 250 V AC 8 A / 250 V AC 1000 W	
Switching capacity DC 24 V- 50 V- 220 V-	800 mA 300 mA 150 mA	
Switching output	Floating	
Switching contacts	1 CO contact	2 CO contact
Ambient temperature	−25 °C *) + 55 °C	
Protection class	II acc. to EN 60335-1	
Accuracy	type ± 1 s / day when +20°C	
Power reserve	3 years ex works for +20°C	
Shortest switching time	1 min	
Programmable	1 min	
Storage places	50	
Manual switch	Automatic / pre-selection Fix ON/ Fix OFF	
Block formation of week days	Free assignment	
Display switch state	Yes	
Daylight saving time option	automatic / free selection / off	
Max. conductor cross section	4 mm ²	
Type of connection	Captive ± screw terminals	
Sealable	Yes	
Programming	Menu in 15 languages	

Transformers

SAFETY BELL TRANSFORMER 230 V~ 50 Hz U/I secondary 8 - 12 V / 1 - 0.67 A Short-circuit proof with PTC

2 M

ITEM WEIGHT PACKING BY EACH UNIT

8 VA	KT08	211	1

SAFETY BELL TRANSFORMER 230 V~ 50 Hz U/I secondary 16 VA 8-12-24 V / 1.3-1.3-0.67 A 24 VA 8-12-24 V / 2-2-1 A Short-circuit proof with PTC

3 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

16 VA	KT16	537	1
24 VA	KT24	758	1

SAFETY TRANSFORMER
230 V~ 50 Hz
U/I secondary 12-12 V / 1.67-1.67 A
Parallel circuit 12 V / 3.3 A
Series circuit 24 V / 1.67 A
Short-circuit proof with PTC

3 M

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

40 VA	ST40	790	1
-------	------	-----	---

SAFETY TRANSFORMER
230 V~ 50 Hz
U/I secondary 12-12 V / 2.63-2.63 A
Parallel circuit 12 V / 5.25 A
Series circuit 24 V / 2.63 A
Short-circuit proof with PTC

6 TE

ITEM	WEIGHT	PACKING
NO.	g/EACH	UNIT

63 VA	ST63	1731	2

