

ON/OFF SWITCH 1-POLE 16 A 250 V

ON/OFF SWITCH 1-POLE
WITH LIGHT SIGNAL
16 A 250 V~

GROUP SWITCH 1-POLE
16 A 250 V~
Autom.-Off-Manual

1 M

AS161

ASL161

1 M

CO SWITCH 1-POLE
16 A 250 V~

MOMENTARY-CONTACT SWITCH
16 A 250 V~

LIGHT SIGNAL 230 V UC

ON/OFF SWITCH 3-POLE 415 V~
Incoming circuit breaker for circuit distribution board, lockable in the "ON" or "OFF" position, maximum connection cross section $25 \mathrm{~mm}^{2}$

1 M

Clear	RST230	73	12
Red	RSR230	73	12
Blue	RSB230	73	12
Green	RSG230	73	12
Yellow	RSY230	73	12

3 M

63 A	AS63	200	4
100 A	AS100	200	4

SCHUKO SOCKET OUTLET SCHUKO ${ }^{\circ}$
10/16 A 250 V~
2.5 M

INSTALLATION RELAY
16 A 250 V~
1-pole 1NO

1 M

$12 \mathrm{~V} \sim$	IR01210	99	12
$230 \mathrm{~V} \sim$	IR23010	99	12

IR... 10	
1	
	A1
	A2
2	

INSTALLATION RELAY
16 A 250 V~
2-pole 2NO

1 M

IR... 20	
1	3
	A1
$\left.\left.\right\|_{2} ^{1}\right\|_{4} ^{1}$	
	A2
2	4

INSTALLATION RELAY
16 A 250 V~
2-pole 1NO + 1NC

1 M

|R... 11

1	3
	A1
$\int_{2}^{1} \prod_{4}^{1}$	
	A2
2	4

STORAGE RELAY
sealable
16 A 250 V~
1 CO contact

SP2301W	
	3
A1	
$\Gamma_{2} 1_{4}^{3}$	
A2	
2	4

DIN-RAIL PANEL PRODUCTS

Installation relays / storage relays mechanical

Installation relay / Storage relay mechanical		
Technical data/type	IR	SP2301W
Contact material	AgSnO_{2}	
Contact interval	$3 \mathrm{~mm} / 2 \mathrm{~mm}$	
Interval control connections / contact	$>6 \mathrm{~mm}$	
Test voltage contact / contact contact / magnet system	$\begin{aligned} & 2000 \mathrm{~V} \\ & 4000 \mathrm{~V} \end{aligned}$	
Nominal switching capacity AC $250 \mathrm{~V}, 400 \mathrm{~V}$	$16 \mathrm{~A}, 10 \mathrm{~A} / 10 \mathrm{~A}, 6 \mathrm{~A}$	$16 \mathrm{~A} / 250 \mathrm{~V} 3520 \mathrm{VA}$
Incandescent lamps and halogen lamp load 230 V	$10 \mathrm{~A}(2300 \mathrm{~W})$	
Fluorescent lamp load in DUO switching	$16 \mathrm{~A}(3500 \mathrm{~W})$ / $10 \mathrm{~A}(2000 \mathrm{~W})$	
Fluorescent lamp load inductive or capacitive	$10 \mathrm{~A}(1300 \mathrm{~W})$	
Electronic ballasts	Ion $140 \mathrm{~A} 10 \mathrm{~ms} / 70 \mathrm{~A} 10 \mathrm{~ms}{ }^{1)}$	
Fluorescent lamp load compensated in parallel	$4 \mathrm{~A}(500 \mathrm{~W})$	
Inductive load $\cos \varphi=0.6 / 230 \mathrm{VAC}$	$10 \mathrm{~A}(1300 \mathrm{~W})$	
High-pressure mercury lamp and metal halide lamp, uncompensated	500 W	
Contact load DC max.	100 W	
Mechanical endurance, change of position $10^{3} / \mathrm{h}$	$>10^{6}$	$>10 \times 10^{8}$
Endurance with rated load, $\cos \varphi=1$ and $10^{3} / \mathrm{h}$	$>10^{5}$	
Endurance with incandescent lamps 1000 W and $103 / \mathrm{h}$	>105	
Endurance with rated load, $\cos \varphi=0.6$ und $103 / \mathrm{h}$	$>4 \times 10^{4}$	
Switching frequency max.	$10^{3} / \mathrm{h}$	$10^{4} / \mathrm{h}$
Closing delay	10-20 ms	10 ms
Opening delay	$5-15 \mathrm{~ms}$	5 ms
Switch position display	per contact	Light emitting diode
Manual operation	yes	no
Switch-on duration	100\% ${ }^{2)}$	100\%
Temperature at the installation location max. / min.	$+50^{\circ} /-5^{\circ} \mathrm{C}$	$+40^{\circ} \mathrm{C}$
Control voltage range	0.9 to $1.1 \times U_{\text {n }}$	0.95 to $1.06 \times \mathrm{U}_{\mathrm{n}}$
Coil power loss AC + DC $\pm 20 \%$	1 - and 2-pole 2 W	1.9 W
Total power loss when continually excited Rated voltage and rated contact load	$\begin{array}{ll} \hline \text { 1-pole } & 4 \mathrm{~W} \\ \text { 2-pole } & 6 \mathrm{~W} \\ \hline \end{array}$	1.9 W
Max. parallel capacitance (length) of the control line	$0.06 \mu \mathrm{~F}(200 \mathrm{~m})$	
Max. induction voltage at the control inputs	$0.2 \times U_{n}$	

1) For electronic ballasts, a switch-on current 40 times more powerful is to be expected.
2) Should several remote switches and installation relays be under continuous excitation, please make sure that there is sufficient ventilation in accordance with the power loss calculation and additionally that a ventilation interval of approx. $1 / 2$ modules is observed.

CONTROL RELAYS
10 A / 250 V
1 CO contact
Universal control voltage
8-230 V
1 M

STU1W

A1	A2
	2
1	3

8 to 230 V UC	STU1W	58	1

Bistable relay contact

After installation, the mains voltage must first be applied to the relay so that the switching contacts can go into a defined state. After about 2 seconds, the switched load can be connected to the mains.

CONTROL RELAYS
$10 \mathrm{~A} / 250 \mathrm{~V}$
2 CO contacts
Universal control voltage
8 - 230 V
1 M

Bistable relay contact

After installation, the mains voltage must first be applied to the relay so that the switching contacts can go into a defined state. After about 2 seconds, the switched load can be connected to the mains.

DIN-RAIL PANEL PRODUCTS

Electronic control relays

Fulfilled EN $61000-6-3$, EN 61000-6-1 and EN 60669 standards

1) For electronic ballasts, a switch-on current 40 times more powerful is to be expected
2) Control relays STU1W and STU2W are clocked. From this, currents of up to 1 A result in the μ s range.

DIN-RAIL PANEL PRODUCTS

Mechanical remote switches

REMOTE SWITCH
16 A 250 V~
1-pole 1N0
1 M

	ITEM NO.	WEIGTT g/EACH	PACKING UNIT

FS... 10	
1	
	A1
$\left.\right\|_{2} ^{1}$	
	A2
2	

$12 \mathrm{~V} \sim$	FS01210	96	12
$230 \mathrm{~V} \sim$	FS23010	96	12

REMOTE SWITCH
16 A 250 V~
2-pole 2NO

FS... 20	
1	3
	A1
$\left.\left.\right\|_{2} ^{1}\right\|_{2} ^{1}$	
	A2
2	4

REMOTE SWITCH
16 A 250 V~
2-pole 1NO + 1NC

FS... 11	
1	3
	A1
$\left.\right\|_{2} ^{1} 1_{4}^{3}$	
	A2
2	4

DIN-RAIL PANEL PRODUCTS

Mechanical remote switches

Mechanical remote switches	
Technical data/type	FS
Contact material	Ag Sn O 2
Contact interval	$3 \mathrm{~mm} / 2 \mathrm{~mm}$
Interval control connections / contact	$>6 \mathrm{~mm}$
Test voltage contact / contact contact / magnet system	$\begin{aligned} & 2000 \mathrm{~V} \\ & 4000 \mathrm{~V} \end{aligned}$
Nominal switching capacity AC $250 \mathrm{~V}, 400 \mathrm{~V}$	$16 \mathrm{~A}, 10 \mathrm{~A} / 10 \mathrm{~A}, 6 \mathrm{~A}$
Incandescent lamps and halogen lamp load 230 V	$10 \mathrm{~A}(2300 \mathrm{~W})$
Fluorescent lamp load in DUO switching	16 A (3500 W) / 10 A (2000 W)
Fluorescent lamp load inductive or capacitive	$10 \mathrm{~A}(1300 \mathrm{~W})$
Electronic ballasts	Ion $140 \mathrm{~A} 10 \mathrm{~ms} / 70 \mathrm{~A} 10 \mathrm{~ms}{ }^{1)}$
Fluorescent lamp load compensated in parallel	$4 \mathrm{~A}(500 \mathrm{~W})$
Inductive load $\cos \varphi=0.6$ / 230 V AC	$10 \mathrm{~A}(1300 \mathrm{~W})$
High-pressure mercury lamp and metal halide lamp, uncompensated	500 W
Contact load DC max.	100 W
Mechanical endurance, change of position $10^{3} / \mathrm{h}$	$>10^{6}$
Endurance with rated load, $\cos \varphi=1$ und $10^{3} / \mathrm{h}$	>105
Endurance with incandescent lamps 1000 W and $10^{3} / \mathrm{h}$	>105
Endurance with rated load, $\cos \varphi=0.6$ and $103 / \mathrm{h}$	$>4 \times 10^{4}$
Switching frequency max.	$10^{3} / \mathrm{h}$
Switch position display	per contact
Manual operation	yes
Switch-on duration	100\% ${ }^{2)}$
Temperature at the installation location max. / min.	$+50^{\circ} /-5^{\circ} \mathrm{C}$
Control voltage range	0.9 to $1.1 \times U_{n}$
Coil power loss AC + DC $\pm 20 \%$	1- and 2-pole 5-6W
Total power loss when continually excited Rated voltage and rated contact load	$\begin{array}{cc} \hline \text { 1-pole } & 7-8 \mathrm{~W} \\ \text { 2-pole } & 9-10 \mathrm{~W} \end{array}$
Max. parallel capacity (length) of the control line	$0.06 \mu \mathrm{~F}(200 \mathrm{~m})$
Max. induction voltage at the control inputs	$0.2 \times \mathrm{Un}$
Glow lamps parallel to the 230 V control buttons	5 mA
With capacitor $1 \mu \mathrm{~F} / 250 \mathrm{~V} \mathrm{AC}$ parallel to the coil	10 mA
With capacitor $2.2 \mu \mathrm{~F} / 250 \mathrm{~V}$ AC parallel to the coil	15 mA

1) For electronic ballasts, a switch-on current 40 times more powerful is to be expected.
2) If several remote switches and installation relays are under continuous excitation, please make sure that there is sufficient ventilation in accordance with the power

Function description:	
FS $=$ Remote switch	Type key e.g. remote switch Item No. FS23011
NS contact	

REMOTE SWITCH CENTRAL CONTROL
16 A / 250 V
2 NO floating
Incandescent lamp load 2,000 W
1 M

8 to 230 V $U C$	FZU20	70	12

FZU20 - Local Universal Control Voltage 8...230V UC

With additional control inputs, central on and central off for 8..230V UC, with galvanic separation from the local control input.

Very low switching noise. Glow lamp current from 110 V control voltage up to 50 mA in switch positions 1 to 3 and 5 to 7 .

A rotary switch allows for setting various priorities.

These determine which other control inputs are blocked as long as a control input is continually excited.
This will then determine how the remote switch reacts during failure and subsequent return of mains voltage:
In switch positions 1 to 4 the switching position remains unaltered.
Switch off is done in switch positions 5 to 8 .
Central commands pending will then be executed.

OFF $\quad=$ Permanently OFF
Positions $\mathbf{1 + 5}=$ No priority. Local button pressing is even possible with permanently excited central control inputs. The final central command is carried out.
Positions 2+6 = Priority for central ON and OFF. Local button pressing is without any effect for the duration central OFF, however, has priority over central ON
Positions $\mathbf{3 + 7}=$ Priority for central ON and OFF. Local button pressing is without any effect for the duration central ON, however, has priority over central OFF.
Positions 4+8 = Priority for the permanently excited local button. Central commands are not carried out for the duration. Glow lamp current is not permitted in these positions.
ON \quad Continuously ON

Switching example of electronic impulse switch for central control

DIN-RAIL PANEL PRODUCTS

Electronic remote switch

Electronic remote switch	
Technical data/type	FZU20
Contacts	
Contact material / Contact interval	$\mathrm{AgSnO}_{2} / 0.5 \mathrm{~mm}$
Interval control connections / contact	6 mm
Test voltage C1-C2 or A1-A2 / contact	4000 V
Test voltage contact / contact	4000 V
Test voltage control connections / contact	4000 V
Nominal switching capacity AC	$16 \mathrm{~A} / 250 \mathrm{~V}$
Incandescent lamps and halogen lamp load $230 \mathrm{~V}{ }^{\text {1) }}$	2000 W
Fluorescent lamp load in (conventional ballast) DUO switching	1000 VA
Fluorescent lamp load in (conventional ballast) uncompensated or serially compensated	500 VA
Compact fluorescent lamps with electronic ballast and energy-saving lamps (ESL)	Ion max. $70 \mathrm{~A} / 10 \mathrm{~ms}^{2)}$
Max. switching current DC1: $12 \mathrm{~V} / 24 \mathrm{~V}$ DC	8 A
Endurance with rated load, $\cos \varphi=1$ and incandescent lamps 1,000 W for $100 / \mathrm{h}$	$>10^{5}$
Endurance with rated load, $\cos \varphi=0.6$ at $100 / \mathrm{h}$	$>4 \times 10^{4}$
Switching frequency max.	$10^{3} / \mathrm{h}$
Maximum cross section of a conductor (3-fold terminal)	$6 \mathrm{~mm}^{2}\left(4 \mathrm{~mm}^{2}\right)$
2 conductors with same cross-section (3-fold terminal)	$2.5 \mathrm{~mm}^{2}\left(1.5 \mathrm{~mm}^{2}\right)$
Screw head	Slotted / cross slot pozidriv
Protection cover (device side)	DIN EN 50274, VDE 00660-514 BGV A3

Electronics	
Switch-on duration (also for central ON/OFF)	100\%
Temperature at the installation location max. / min.	$+50^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C}$
Stand-by loss (active power) 230 V	0,4 W
Stand-by loss (active power) $12 \mathrm{~V} / 24 \mathrm{~V}$	0.03 W / 0,06 W
Control current Universal control voltage all control voltages (<5s) $\pm 20 \%$	
Control current Universal control voltage $8 / 12 / 24 / 230 \mathrm{~V}(<10 \mathrm{~s}) \pm 20 \%$	$0.1 / 0.1 / 0.2 / 1 /(30) \mathrm{mA}$
Control current Central 8/12/24/230 V (<10 s) $\pm 20 \%$	$2 / 4 / 9 / 5 /(100) \mathrm{mA}$
Max. parallel capacitance (length) of the central control line for 230 VAC	$0.3 \mu \mathrm{~F}(1000 \mathrm{~m})$
Max. parallel capacitance (length) of the central control line for 230 V AC	$0.9 \mu \mathrm{~F}(3000 \mathrm{~m})$

Fulfilled EN 50081-1, EN 50082-2 and EN 60669 standards
Bistable relay as NOC. Wait for short automatic synchronisation after installation before applying the switched load to the mains.

1) For lamps with max. 150 W
2) For electronic ballasts, a switch-on current 40 times more powerful is to be expected

TOUCH DIMMER
Universal control voltage
8 to 230 V UC,
R, L and C loads 400 W
Dimmable ESL 100 W
Dimmable LED, 230 V 100 W

1 M

Electronic universal touch dimmer for R, L and C loads

Universal control voltage 8..230 V UC, galvanically separated from supply and switching voltage 230 V .
Short control commands switch on/off, permanent activation adjusts brightness up to the maximum value
A brief interruption of the activation alters the dimming direction.
The set level of brightness remains saved when switched off.

With switches for children's rooms:

When switching on and pressing the button for at least 1 second, the light will switch on at the lowest brightness level and slowly increase brightness, without altering the last brightness level saved.

With sleep function:

The lighting is dimmed from its current brightness and switches off when it receives a double impulse. The maximum dimming time of 60 minutes is dependent on the current brightness and can be shortened accordingly. Switching-off during the dimming procedure is always possible by pressing the button briefly. Pressing the button for a longer time during the dimming procedure turns up the light and ends the sleep function.

Defined switch-off during electricity failure.
From 110 V control voltage, glow lamp current 30 mA With the \% :-rotary switch the minimum brightness can be set (completely dimmed) e.g. for dimmable energy-saving lamps.

The dim speed rotary switch can be used to set the dimming speed. At the same time the duration of the soft ON and soft OFF is altered. The +ESL settings take into consideration the special conditions for dimmable energysaving lamps: The switching-on procedure is optimised and the dimming rate is altered logorithmically. The children's room switch is not possible in these settings and wound (inductive) transformers are not allowed to be dimmed.

Memory is switched off in the -ESL setting. This can be advantageous with ESL, since cold ESL require a higher minimum brightness than might be stored in the memory with warm ESL

The LED settings take into account the special conditions for dimmable 230V LED lamps. Different dimming curves can be selected. In these settings, no wound (inductive) transformers may be dimmed.

Automatic electronic overload protection and thermal overload switch-off.

L loads (inductive loads, e.g. wound transformers) and C loads (capacitor loads, e.g. electronic transformers) must not be mixed.
L and C loads can be mixed as desired with R loads (ohmic loads, e.g. 230 V incandescent and halogen lamps).

Technical data for dimmer TDU500 ${ }^{\text {1) }}$	
Incandescent lamps $230 \mathrm{~V}(\mathrm{R})$	400 W
Halogen lamps $230 \mathrm{~V}(\mathrm{R})$	400 W
Inductive transformers (L)	$\left.400 \mathrm{~W}^{2)} 3\right)$
Electronic transformers (C)	$\left.400 \mathrm{~W}^{2)} 3\right)$
Dimmable energy-saving lamps ESL	$100 \mathrm{~W}^{4)}$
Dimmable LED 230 V	100 W
Temperature at the installation location max. / min.	$+50^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C}$)
Control voltage area	0.9 bis $1.1 \times \mathrm{U}_{\mathrm{n}}$
Constant current supply	12 mA

The parallel operation of inductive (wound) and capacitive (electronic) transformers is not allowed!

1) For loads greater than 300 W , a ventilation interval of $1 / 2$ module is to be maintained to devices mounted next to each other.
2) A maximum of two inductive (wound) transformers are allowed per universal dimmer switch and only the same types may be used; in addition, secondary-side idling is not allowed. Otherwise the universal
dimmer switch may be destroyed!
Therefore no secondary-side load switch-off allowed.
3) When calculating loads, 20% loss for inductive (wound) transformers and 5\% loss for capacitive (electronic) transformers must be taken into account in addition to the lamp load.
4) In the ESL settings, no inductive (wound) transformers may be dimmed.
5) Influences the maximum switching capacity.

Connection example

LOAD SHEDDING RELAYS
sealable
for electronically and pneumatically regulated flow heaters

1 M

Load shedding relays			
Technical data / type	LRU39 for electronic and pneumatic flow heaters		
Field coil			
Rated current area AC	6.7 ... 39 A	Response current AC	<5.3 A
Rated power for 230 V AC	1.5 ... $9 \mathrm{KW} / 230 \mathrm{~V} \sim$	Max. continuous current AC	43 A
Rated power for 230 / 400 V AC	4.6 ... 27 KW / 400 V~	Constant thermal load capacity $40^{\circ} \mathrm{C}$	2.5 W
Operating / rated power	0.5 ... 4VA	Connection terminal single wire	$2.5 \mathrm{~mm}^{2}-16 \mathrm{~mm}{ }^{2}$
		Connection terminal multiple wire	$2.5 \mathrm{~mm}^{2}-16 \mathrm{~mm}^{2}$
Relay contact			
Contact	1 NC	Max. electrical switching frequency / h	approx. 1,800 switching cycles /h
Rated contact current for 250 V AC	1 A	Max. ambient temperature	$40^{\circ} \mathrm{C}$
Contact material	Hard silver gold-flashed	Response time / release time	$10 . . .20 \mathrm{~ms} / 20 \ldots 30 \mathrm{~ms}$
Max. switching voltage AC	400 V	Volume resistance	approx. $3 \mathrm{~m} \Omega$
Max. switching capacity	250 VA	Test voltage contact / coil AC	2.5 KV
Max. switch-on peak current	5 A	Isolation group acc. to VDE 0110	C/ 250 V
Electric endurance with rated load	>100,000 switching cycles	Protection type housing	IP40
Mechanical endurance	approx. 1 million switching cycles	Connection terminal single wire	$0.75 \mathrm{~mm}^{2}-4 \mathrm{~mm}^{2}$
Switch-on duration	100\%	Connection terminal multiple wire	$0.75 \mathrm{~mm}^{2}-4 \mathrm{~mm}^{2}$

DIN-RAIL PANEL PRODUCTS

Twilight switch

TWILIGHT SWITCH WITH SEPARATE LIGHT COLLECTOR
$230 \mathrm{~V} \sim, 50 \ldots 60 \mathrm{~Hz}$
$16 \mathrm{~A}, 1 \mathrm{CO}$ contact
2 M

Twilight switch DS2301W

Technical data

Light intensity Area 1 Area 2 Area 3	$\begin{gathered} \text { 2-100 Lux } \\ 2-1000 \text { Lux } \\ 2-10000 \text { Lux } \end{gathered}$
Delay when switching on	8 sec .
Delay when switching off	38 sec .
Contact material	AgCdO
Contact interval	$<3 \mathrm{~mm}$
Interval control connections / contact	5 mm
Rated insulation voltage contact / contact contact / magnet system	$\begin{aligned} & 1 \mathrm{KV} \\ & 4 \mathrm{KV} \end{aligned}$
Switching capacity AC	$16 \mathrm{~A} / 250 \mathrm{~V} \cos \varphi=1$
Incandescent lamp load	2300 W
Inductive load $\cos \varphi=0.8$	$3 \mathrm{~A} / 250 \mathrm{~V}$
Mechanical endurance, change of position	5×10^{7}
Endurance with rated load, $\cos \varphi=1$ and $10^{3} / \mathrm{h}$	10^{5}
Endurance with incandescent lamps 1000 W and $103 / \mathrm{h}$	25×10^{3}
Endurance with rated load, $\cos \varphi=0.6$ und $10^{3} / \mathrm{h}$	75×10^{3}
Switch position display relay	LED red
Switch position display switch point	LED green
Switch-on duration	100\%
Temperature at the installation location min. / max.	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Total power loss during continuous excitation	2.2 W
Degree of protection	IP20
Protection type light collector	IP65
Max. cable length to light collector	100 m

[^0]

MULTI-FUNCTION TIME RELAYS
16 functions
1 CO contact $10 \mathrm{~A} / 250 \mathrm{~V}$ ~
Time range 0.1 sec . -40 hrs
1 M

8 V to 230 V UC	MRU1W	75	10

TIME RELAYS
1 CO contact $10 \mathrm{~A} / 250 \mathrm{~V}$ ~
Time range 0.1 sec . - 40 hrs
1 M

8 V to 230V UC	AVU1W	75	1
	RVU1W	75	1

Function description MRU1W

Stand-by loss only 0.1 Watt
Depending on the connection for the electricity supply to terminal B1 or
B2, two different function levels can be selected:

Function level 1 for connection of electricity supply to B1-A2

RV = Release delay
AV = Response delay
TI = Clock generator starting with impulse
TP = Clock generator starting with pause
IA = Impulse-controlled response delay
EW = Passing make contact
AW = Passing break contact
ARV = Response and release delay
ON = Continuously ON
OFF = Permanently OFF

Function level 2 for connection to electricity supply to B2-A2
ER = Relay function
EAW = Passing make and break contact
ErS = Impulse switch function
IF = Impulse former
ARV+ = Additive response and release delay
ESV = Impulse switch with release delay and Pre-warning of switch-off
$\mathbf{A V}_{+}=$Additive response delay
SRV = Impulse switch with release delay
$\mathbf{O N}=$ Continuously ON
OFF = Permanently OFF

xT

The time base T
is set for latching rotary switches
[T]. There is a choice between the base values 0.1 seconds, 0.5 seconds, 2 seconds, 5 seconds, 1 minute, 2 minutes, 5 minutes, 1 hour, 2 hours and 4 hours. The total time is calculated from the time base multiplied by the multiplier.

The multiplier \mathbf{x} T

is set with the latching rotary switch $[\mathrm{xT}]$ and is between 1 and 10. This makes it possible to set times between 0.1 seconds (time base 0.1 seconds and multiplier 1) and 40 hours (time base 4 hours and multiplier 10).

Light emitting diode

under the large rotary switch provides information about the contact position during the time period.
It blinks as long as NOC 15-18 is open (15-16 closed) and glows continuously as long as NOC 15-18 is closed (15-16 open).

+B1	+B2
+A1	-A2
	5 μ 18
	16
15	18

RV = Release delay

(Delay in switching off)

When applying control voltage, the NOC changes to 15-18. With the interruption of the control voltage, the time period begins and at its end the NOC returns to its rest position.
Can be reset during the time period.

AW = Passing break contact relay

When the control voltage is interrupted, the NOC changes to 15-18 and returns after the impulse time has elapsed. If the control voltage is applied during the impulse time, the NOC immediately reverts to its rest position and the residual time is deleted.

AV = Response delay

(Delay when switching on)

With the application of the control voltage, the time period begins and at its end the NOC changes to 15-18. After an interruption, the time period starts again.

ARV = Response and release delay

When the control voltage is applied, the timing period is started; at its end the NOC changes to $15-18$. If the control voltage is interrupted after this, another timing period is started; at its end the NOC returns to the rest position. This release delay is identical to the response delay. After an interruption of the response delay, the time period begins again.

$\mathrm{TI}=$ Clock generator starting with impulse

As long as the control voltage is applied, the NOC closes and opens. For MRU1W the switching time in both directions is identical and corresponds to the time set. For TIUMW both times can be set separately. When the control voltage is applied, the NOC immediately changes to 15-18.

EAW = Passing make contact relay and passing break contact relay

When the control voltage is applied and interrupted, the NOC changes to $15-18$ and returns after the set impulse time has elapsed.

TP = Clock generator starting with pause
 (Flashing relay)

Function descriptions same as TI , except that when the control voltage is applied, the contact does not change to $15-18$ but rather first remains at 15-16 or open.

IF = Impulse former

When the control voltage is applied, the NOC changes to $15-18$ for the time set. Further activations are only evaluated after the set time has elapsed.

IA = Impulse-controlled response delay

With the start of a control pulse from 20 ms , the timing period t 1 starts; at its end, the NOC changes to $15-18$ for the time t2 ($=1$ second) (e.g. for automatic door openers). If t 1 is set to the shortest time of 0.1 seconds, IA operates as an impulse former, for which t2 elapses, independent of the control signal's duration (min. 150ms).

EW = Passing make contact relay

With the application of the control voltage, the NOC changes to 15-18 and returns after the impulse time. If the control voltage is removed during the impulse time, the NOC immediately returns to the rest position and the remaining time is deleted.

ARV+ = Additive response and release delay

Same function as the ARV, but after an interruption of the response delay, the elapsed time remains stored.

ESV = Impulse switch with release delay and pre-warning of switch-off

Function as SRV. Also with pre-warning of switch-off: approx. 30 sec. before time elapses, the light flickers 3 times in shorter and shorter periods.

AV+ = Additive response delay

Same function as the AV, but after an interruption, the time already elapsed remains stored.

SRV = Impulse switch with release delay

The NOC switches back and forth with control impulses from 50 ms . In contact position 15-18, the device automatically switches to the rest position after the delay time has elapsed.

DIN-RAIL PANEL PRODUCTS

Time relays and multi-function relays

Time relays and multi-function relays	
Technical data / type	MRU1W / AVU1W / RVU1W
Switch-on duration	100\%
Temperature at the installation location max. / min.	$+50^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C}$
Contact material / contact interval	$\mathrm{AgSnO}_{2} / 0.5 \mathrm{~mm}$
Interval control connections / contact	3 mm
Test voltage contact / contact	1000 V
Test voltage control connections / contact	2000 V
Nominal switching capacity AC	$10 \mathrm{~A} / 250 \mathrm{~V}$
Incandescent lamps and fluorescent lamps, inductive or capacitive	1000 W
Fluorescent lamps in DUO switching	1000 W
Fluorescent lamps compensated in parallel	500 W
Electronic ballasts	Ion max $70 \mathrm{~A} / 10 \mathrm{~ms}{ }^{2)}$
Inductive load $\cos \varphi=0.6$ / 230 V AC	650 W
Max. switching current DC 1 (not for NP type): $12 \mathrm{~V} / 24 \mathrm{~V}$ DC	8 A
Endurance with rated load, $\cos \varphi=1$ and incandescent lamps 1000 W for $100 / \mathrm{h}$	>105
Endurance with rated load, $\cos \varphi=0.6$ bei $100 / \mathrm{h}$	$>4 \times 10^{4}$
Temperature dependency	<0,2\% each ${ }^{\circ} \mathrm{C}$
Repetition accuracy at $25^{\circ} \mathrm{C}$	$\pm 0,1 \%$
Setting accuracy from 1 minute	$\pm 0,2 \%$
Control voltage dependency between 0.8 and $1.1 \times U_{n}$	none
Bridging time during mains failures (then total reset)	min. 0.2 seconds
Control current $12 \mathrm{~V} / 230 \mathrm{~V} \pm 20 \%$	$0.05 / 0.9 \mathrm{~mA}$
Control current 12 V DC / 230 V DC $\pm 20 \%$	$0.09 / 1.7 \mathrm{~mA}$
Power consumption continuous electricity supply $12 \mathrm{~V} / 230 \mathrm{~V}$ UC relay OFF	$0.02 / 0.4 \mathrm{~W}$
Power consumption continuous electricity supply $12 \mathrm{~V} / 230 \mathrm{~V}$ UC relay ON	0.3 / 1.0W 3)
Max. parallel capacity (length) of the control lines for 230 V	$0.2 \mu \mathrm{~F}$ (approx. 600 m)
Protection cover (device side)	DIN EN 50274, VDE 0660-514 BGV A3
Box terminal cross section	$12 \mathrm{~mm}^{2}$
Maximum cross section of a conductor	$6 \mathrm{~mm}^{2}$
Screw head	Slotted / cross slot pozidriv

Meets VDE0435, EN 61000-6-3, EN 61000-6-1 and EN 60669 standards

1) Only with constant mains voltage $>110 \mathrm{~V}$ and only when "relay on" for more than 60 minutes, is it necessary to maintain a ventilation interval of $1 / 2$ module on both sides. If required, use the distance device.
For 230 V AC , a capacitor $0.33 \mu \mathrm{~F} / 250 \mathrm{~V}$ in series with B1 is also sufficient.
2) For electronic ballasts, a switch-on current 40 times more powerful is to be expected.

DIN-RAIL PANEL PRODUCTS

Mains monitoring

MAINS MONITORING
NW1
NWA1 asymmetrical monitoring
UAB 154 V, UAN 198 V

2 M

	ITEM NO.	WEIGHT g/EACH	PACKING UNIT

1NO +	NW1	98	1
1NC	NWA1	98	1

MAINS MONITORING
NW2
NWA2 asymmetrical monitoring
UAB 187 V, UAN 210 V
2 M

Mains monitoring		
Technical data / type	NW1 / NW2	NWA1 / NWA2
Mains connection	1 -3-phase $230 / 400 \mathrm{~V}$	3 -phase $230 / 400 \mathrm{~V}$
Operational voltage	via L1-N 230 V AC	
Frequency	$45 . .65 \mathrm{~Hz}$	
Power consumption	5.5 VA	
Response / drop delay	$0.15 \ldots 0.5 \mathrm{sec}$.	
Input pulse amplitude max. $\begin{aligned} & 6 \mathrm{~ms} \\ & 20 \mathrm{~ms}\end{aligned}$	$\begin{aligned} & 2.5 \mathrm{KV} \\ & 1.0 \mathrm{KV} \end{aligned}$	
Asymmetrical monitoring	none	10\%
Back-up fuse	no / device inherently stable	
Relays		
Contact material	Ag Ni $0.15+\mathrm{HV}$	
Contact interval	>0.35	
Interval control connections / contact	15 mm	
Rated insulation voltage $\begin{array}{l}\text { contact / contact } \\ \text { contact / magnet system }\end{array}$	$\begin{aligned} & 1000 \mathrm{~V}_{\text {eff }} \\ & 4000 \mathrm{~V}_{\text {eff }} \end{aligned}$	
Rated switching capacity	2000 VA	
Contact load DC max. (A) 24 V	8 A	
60 V	1.8 A	
110 V	0.4 A	
220 V	0.3 A	
Minimum contact load	$10 \mathrm{~mA} / 12 \mathrm{~V}$	
Mechanical endurance	3×10^{7}	
Endurance with rated load, $\cos \varphi=1$	100000	
Endurance with rated load $\cos \varphi=0.4$	80000	
Switching frequency max.	3000 / h	
Switch position display	LED	
Switch-on duration / switching safety	100\%	
Temperature at the installation location max. / min.	$-40^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$	
Total power loss during constant excitation	0.55 VA	

INSTALLATION CONTACTOR
20 A / 230 V AC
2-pole • Control voltage 230 VAC
1 M

	ITEM N0.	WEIGHT $\mathbf{g} /$ EACH	PACKING UNIT
2NO IS2020 200 12 1NO 1NC IS2011 200 12			

INSTALLATION CONTACTOR
25 A 230 / 400 V AC
4-pole Control voltage 230 V AC

2 M

	ITEM NO.	WEIGHT g/EACH	PACKING UNIT
4NO	IS2540	280	6
2NO 2NC	IS2522	280	6
3NO 1NC	IS2531	280	6

INSTALLATION CONTACTOR
40 A and $63 \mathrm{~A} 230 / 400 \mathrm{~V}$ AC
4-pole - Control voltage 230 V AC
3 M

	ITEM NO.	WEIGHT g/EACH	PACKING UNIT
4NO	IS4040	450	4
$4 N O$	IS6340	450	4

AUXILIARY CONTACT
Continuous thermal current $I_{\text {th }}=6 \mathrm{~A}$
Rated operating current l_{e}
with AC-15 for $U_{e} 240$ V AC 3 A 415 V AC 2 A 440 V AC $1,6 \mathrm{~A}$
$1 / 2$ M

	¢ $\begin{gathered}\text { ITEM } \\ \text { No. }\end{gathered}$	WEIGHT	$\begin{array}{\|l\|l\|l\|l\|l\|} \text { PANITG } \end{array}$
1NO 1NC	ISH11	23	3

DISTANCE DEVICE 9MM

We recommend the use of distance devices at ambient temperatures higher than $40^{\circ} \mathrm{C}$

DIN-RAIL PANEL PRODUCTS

Installation contactors

Technical data acc. to IEC 60947-3, IEC 60947-5-1, VDE 0660, EN 60947-3, EN 60947-5-1

Main contact element types		IS20..	IS25..	IS40..	IS63..
Rated insulation voltage U_{i}	V AC	$\mathbf{4 4 0}$	$\mathbf{4 4 0}$	$\mathbf{4 4 0}$	$\mathbf{4 4 0}$
Rated operating voltage U_{e}	V AC	440	440	440	440
Allowed switching frequency z	AC1, AC3 $1 / \mathrm{h}$	300	300	600	
Mechanical endurance	S $\times 10^{6}$	1	1	1	1

Usage category AC1

Rated operating current $\mathrm{I}_{\mathrm{e}}\left(=\mathrm{I}_{\mathrm{h}}\right)$ open	at $60^{\circ} \mathrm{C} \mathrm{A}$	20	25	40	63
Switching element endurance	$\mathrm{S} \times 10^{6}$	0.1	0.1	0.1	0.1
Power loss per pole for $\mathrm{I}_{\mathrm{e}} / \mathrm{AC} 1$	W	2	2	3	7

Usage category AC3 - Switching of three-phase motors

Rated operating current I_{e}	A	-	9	27	
Rated power for 220 V	kW	-	2.2	7.5	8
Three-phase motors $230-240 \mathrm{~V}$	kW	-	8.5	8	
$50-60 \mathrm{~Hz}$	kW		4	12.5	
Switching element endurance	$\mathrm{S} \times 106$	-	0.15	0.15	

Magnetic coil

Magnetic coil output	Switching VA	$7-9$	$14-18$	$33-45$	$33-45$
Alternating current activation	Stop VA	$2.2-4.2$	$4.4-8.4$	7	7
	W	$0.8-1.6$	$1.6-3.2$	2.6	2.6

Magnetic coil operating areas						
Control voltage dependency U_{s}		$0.85-1.1$	$0.85-1.1$	$0.85-1.1$	$0.85-1.1$	

Short circuit protection

Max. back-up fuse main circuits	$\mathrm{gL}(\mathrm{gG}) / \mathrm{A}$	35	35	80	
Switching times for control voltage U $_{\mathrm{S}} \pm 10 \%$	Closing delay ms	$7-16$	$9-15$	$11-15$	$11-15$
	Opening delay ms	$6-12$	$4-8$	$6-13$	$6-13$
	Arc duration ms	$10-15$	$10-15$	$10-15$	$10-15$

Connection cross sections

Single or multiple wire main conductor	mm^{2}	$1.5-10$	$1.5-10$	$2.5-25$	$2.5-25$
Stranded wire	mm^{2}	$1.5-6$	$1.5-6$	$2.5-16$	
Stranded wire with ferrule	mm^{2}	$1.5-6$	$1.5-6$	$2.5-16$	
Number of clampable conductors per terminal		1	1	$2.5-16$	
Coil single wire or multiple wire	mm^{2}	$0.75-2.5$	$0.75-2.5$	$0.75-2.5$	
Stranded wire	mm^{2}	$0.5-2.5$	$0.5-2.5$	0.7	
Stranded wire with ferrule	mm^{2}	$0.5-1.5$	$0.5-1.5$	$0.5-2.5$	$0.5-2.5$
Number of clampable conductors per terminal		1	1	$0.5-1.5$	

Auxiliary contact ISH11

DIN-RAIL PANEL PRODUCTS

Installation contactor IS - Switching of lamp loads

LAMP TYPE	$\underset{\text { Watt }}{\substack{\text { OUTPUT }}}$	$\begin{gathered} \text { CURRENT } \\ I_{n} / A \end{gathered}$	$\underset{\mu \mathrm{F}}{\text { CAPACITOR }}$	MAX. NUMBER OF LAMPS PER CONDUCTING PATH FOR 230 V 50 HZ AND MAX. $60^{\circ} \mathrm{C}$			
				IS20..	IS25..	IS40..	IS63..

Incandescent lamps	60	0,27	-	22	28	92	129
	100	0,45	-	13	17	55	77
	200	0,91	-	7	8	27	38
	300	1,36	-	4	5	19	26
	500	2,27	-	3	3	11	16
	1000	4,5	-	1	1	6	8
Fluorescent lamps Uncompensated or Serially compensated	11	0.16	1,3	60	75	210	310
	18	0.37	2,7	25	30	90	140
	24	0.35	2,5	25	30	90	140
	36	0.43	3,4	20	25	70	140
	58	0.67	5,3	14	17	45	70
	65	0.67	5,3	13	16	40	65
	85	0.8	5,3	11	14	35	60
Fluorescent lamps Duo switching	11	0.07	-	2×100	2×110	2×220	2×250
	18	0.11	-	2×50	2×55	2×130	2×200
	24	0.14	-	2×40	2×44	2×110	2×160
	36	0.22	-	2×30	2×33	2×70	2×100
	58	0.35	-	2×20	2×22	2×45	2×70
	65	0.35	-	2×15	2×16	2×40	2×60
	85	0.47	-	2×10	2×11	2×30	2×40
Fluorescent lamps Parallel compensation	11	0.09	2	30	43	67	107
	18	0.13	2	20	32	50	80
	24	0.16	3	15	32	50	80
	36	0.27	4	10	32	50	80
	58	0.45	7	6	18	36	46
	65	0.5	7	5	18	36	46
	85	0.6	8	4	18	33	44
Fluorescent lamps with electronic ballast	18	0.09	-	40	40	100	150
	36	0.16	-	20	20	50	75
	58	0.25	-	15	15	30	55
	2×18	0.17	-	2×20	2×20	2×50	2×60
	2×36	0.32	-	2×10	2×10	2×25	2×30
	2×58	0.49	-	2×7	2×7	2×15	2×20
Transformers for low-voltage halogen lamps	20	0.09	-	40	52	110	174
	50	0.22	-	20	24	50	80
	75	0.33	-	13	16	35	54
	100	0.43	-	10	12	27	43
	150	0.65	-	7	9	19	29
	200	0.87	-	5	5	14	23
	300	1.3	-	3	4	9	14
Mercury high-pressure lamps uncompensated e.g. high-pressure mercury lamp and metal halide lamp	50	0.61	-	16	21	38	55
	80	0.8	-	12	16	29	40
	125	1.15	-	8	11	20	28
	250	2.15	-	4	6	11	15
	400	3.25	-	3	4	7	10
	700	5.4	-	1	2	4	6
	1000	7.5	-	1	1	3	4
Mercury high-pressure lamps compensated e.g. high-pressure mercury lamp and metal halide lamp	50	0.28	7	7	18	36	50
	80	0.41	8	5	16	31	44
	125	0.65	10	3	13	25	35
	250	1.22	18	2	7	14	19
	400	1.95	25	1	5	10	14
	700	3.45	45	1	3	6	8
	1000	4.8	60	-	2	4	6

DIN-RAIL PANEL PRODUCTS

Installation contactor IS - Switching of lamp loads

LAMP TYPE	OUTPUTWatt	$\begin{aligned} & \text { CURRENT } \\ & I_{n} / A \end{aligned}$	$\underset{\mu \mathrm{F}}{\text { CAPACITOR }}$	MAX. NUMBER OF LAMPS PER CONDUCTING PATH FOR 230 V 50 HZ AND MAX. $60^{\circ} \mathrm{C}$			
				IS20..	IS25..	IS40..	IS63..

Metal halogen lamps uncompensated e.g. high-pressure mercury lamp and metal halide lamp, CDM	35	0.53	-	22	24	57	65
	70	1	-	12	14	30	35
	150	1.8	-	6	8	17	18
	250	3	-	4	5	10	12
	400	3.5	-	3	4	8	10
	1000	9.5	-	1	1	3	4
	2000	16.5	-	-	-	2	2
	$2000 / 400 \mathrm{~V}$	10.5	-	-	-	2	2
	$3500 / 400 \mathrm{~V}$	18	-	-	-	1	1
Metal halogen lamps compensated e.g. high-pressure mercury lamp and metal halide lamp, CDM	35	0.25	6	8	21	42	58
	70	0.45	12	4	11	21	29
	150	0.75	20	2	7	13	18
	250	1.5	33	1	4	9	11
	400	2.1	35	1	4	9	10
	1000	5.8	95	-	1	3	4
	2000	11.5	148	-	-	2	2
	$2000 / 400 \mathrm{~V}$	6.6	58	-	-	3	4
	$3500 / 400 \mathrm{~V}$	11.6	100	-	-	2	3
Metal halogen lamps with electronic ballast (e.g. PCI) $50-125 \times \mathrm{In}_{\mathrm{n}}$ lamps for 0.6 ms	20	0.1	Integrated	9	9	18	20
	35	0.2	Integrated	6	6	11	13
	70	0.36	Integrated	5	5	10	12
	150	0.7	Integrated	4	4	8	10
Low pressure sodium vapour lamps uncompensated	35	1.5	-	7	9	22	30
	55	1.5	-	7	9	22	30
	90	2.4	-	4	6	13	19
	135	3.3	-	3	4	10	14
	150	3.3	-	3	4	10	14
	180	3.3	-	3	4	10	14
	200	3.3	-	3	4	10	14
Low pressure sodium vapour lamps compensated	35	0.31	20	3	6	15	18
	55	0.42	20	2	6	15	18
	90	0.63	30	1	4	10	12
	135	0.94	45	1	3	7	8
	150	1	40	1	3	8	9
	180	1.16	40	1	3	8	9
	200	1.32	25	-	-	10	12
High pressure sodium vapour lamps uncompensated	150	1.8	-	5	8	17	22
	250	3	-	4	5	10	13
	330	3.7	-	3	4	8	10
	400	4.7	-	2	3	6	8
	1000	10.3	-	1	1	3	4
High pressure sodium vapour lamps compensated	150	0.83	20	2	7	20	25
	250	1.5	33	1	4	12	15
	330	2	40	1	3	10	13
	400	2.4	48	1	2	8	12
	1000	6.3	106	-	1	4	6
High pressure sodium vapour lamps Sodium vapour lamps with electronic ballast (e.g. PCI) $50-125 \times \ln$ lamp for 0.6 ms	20	0.1	Integrated	9	9	18	20
	35	0.2	Integrated	6	6	11	13
	70	0.36	Integrated	5	5	10	12
	150	0.7	Integrated	4	4	8	10

STAIRWAY LIGHT TIME SWITCHES
WITH PRE-WARNING
OF SWITCH-OFF
230 V AC 50 / 60 Hz
16 A 1 NO (not floating)
Time range 1 to 30 minutes

1 M

Incandescent lamp load 2300 W
Glow lamp current 50 mA

TZA2301 Stairway light time switches
 Stand-by loss only 0.5 Watt.

Contact circuit in zero crossing to protect the contacts and lamps. This is especially good for increasing the endurance for energy-saving lamps. Very low switching noise.
Exact time settings from 1 to 30 minutes with minute scale. Control, supply and switching voltage 230 V . Also with galvanically separated universal control voltage $8 . . .230 \mathrm{~V}$ UC. Glow lamp current up to 50 mA , independent of the glow lamp ignition voltage.
Own continuous light switch with large rotary switch.
When the pre-warning switch-off is activated \smile, the light flickers approx. 30 seconds before time elapses and 3 times in total in shorter and shorter periods.

When the continuous light button is activated, - pressing the button for longer than one second can activate the continuous light, which is automatically switched off after 60 minutes or can be switched off by pressing for longer than 2 seconds.
If the continuous light button and the pre-warning ${ }^{-} \mathrm{T}^{-}$of switch-off are activated, then the pre-warning of switch-off only activates after switching off the continuous light. If energy-saving lamps are switched (ESL) completely or partly, then set the pre-warning of switch-off and the continuous light button on the right ESL side of the rotary switch
Within 1 second after switch-on or subsequent switch-on, the time can be extended (pumped) with the TLZ functions by briefly pressing the button three times. Every touch adds one time to the set time.

Multifunctional: Can switch between the $\mathbf{F S}$ (impulse relay), $\mathbf{S T}$ (relay) and ESV (impulse relay with release delay) functions. The ESV function, the times (t) settable with the rotary switch above correspond to the following values: $1=2 \mathrm{~min}, 2=5 \mathrm{~min}$, $3=10 \mathrm{~min}, 4=15 \mathrm{~min}, 6=25 \mathrm{~min}, 8=35 \mathrm{~min}, 10=45 \mathrm{~min}, 12=60 \mathrm{~min}$, $20=90 \mathrm{~min}, 30=120 \mathrm{~min}$.
After the set delay time has elapsed, automatic switch-off is carried out if the manual OFF command was not given. Pre-warning of switch-off and the continuous light button can be connected for ESV. Forgotten continuous light is switched off after 2 hours.

Connection examples

3 -conductor circuit	4-condictor circuit, with subsequent switching with attic lighting, with subsequent switching

Automatic mode:
TLZ: $\mathrm{t}_{\text {max }}=30 \mathrm{~min}$
7 pre-warning switch
8. continuous ligh button

ESV: $\mathrm{t}_{\text {max }}=120 \mathrm{~min}$

With double connections for button and lamp so that they can be connected above and below or only below.
t

TLZIESV

Time setting

TLZ / ESL t = time 1 to 30 minutes
ESV $\quad t=$ time 2 to 120 minutes

Function selection switch TLZ / ESV and ESL

${ }^{-}$ユ- $^{-}=$Pre-warning of switch-off
= Continuous light button

- $^{\text {+ }}{ }^{-}$ユ- $^{-}=$Continuous light button + pre-warning of switch-off
(-9) = Continuous light switch

DIN-RAIL PANEL PRODUCTS

Stairway light time switches

Technical data stairway light time switch	TZA2301 *
Contacts	
Contact material / contact interval	$\mathrm{AgSnO}_{2} / 0.5 \mathrm{~mm}$
Interval control connections / contact	3 mm
Interval A1-A2 / contact	6 mm
Test voltage control connections / contact	2000 V
Test voltage A1-A2 / contact	4000 V
Nominal switching capacity AC	$16 \mathrm{~A} / 250 \mathrm{~V}$
Incandescent lamps and halogen lamp load 230 V 1)	2300 W
Fluorescent lamp load (conventional ballast) In DUO switching or uncompensated	1000 VA
Fluorescent lamp load (conventional ballast) with parallel compensation or with electronic ballast	500 VA
Compact fluorescent lamps with electronic ballast And energy-saving lamps ESL	$\begin{aligned} & 15 \times 7 \mathrm{~W} \\ & 10 \times 20 \mathrm{~W} \end{aligned}$
Endurance with rated load, $\cos \varphi=1$ or for incandescent lamps 1000 W for $100 / \mathrm{h}$	$>10^{5}$
Endurance with rated load, $\cos \varphi=0.6$ to $100 / \mathrm{h}$	$>4 \times 10^{4}$
Switching frequency max.	$10^{3} / \mathrm{h}$
Box terminal cross sections	$12 \mathrm{~mm}{ }^{2}$
Maximum cross section of a conductor	$6 \mathrm{~mm}^{2}$
Screw head	Slotted / cross slot, pozidriv slot
Protection cover (device side)	VDE 0106 part 100

Electronics	
Switch-on duration	
Temperature at the installation location max. / min.	
Stand-by loss (active power)	$+50^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C}$
Control current locally at $230 \mathrm{~V}(<10 \mathrm{~s}) \pm 20 \%$	0.5 W
Max. parallel capacity (approx. length) of the individual control lines for 230 V AC	$5(100) \mathrm{mA}$

Fulfilled EN 61000-6-3, EN 61000-6-1 and EN 60669 standards
With pre-warning of switch-off acc. to DIN 18015-2

* Bistable relay as NOC. Wait for automatic synchronisation after installation before applying the switched load to the mains.

1) For lamps with max. 150 W .

Synchronised / Quartz time switch

SYNCHRONISED TIME SWITCH
$230 \mathrm{~V} \sim 50 \mathrm{~Hz}$
16 A, 1 CO contact without power reserve

3 M

QUARTZ TIME SWITCH
$230 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$
16 A, 1 CO contact
Power reserve 150 h
3 M

24 h	AZ1TO	200	1
7 Tage	AZ7TO	200	1

Technical data / type	AZ1TS / AZ7TS	AZ1TO / AZ7TO
Operating voltage	220-240 V AC	230 V AC / 130 V DC
Frequency	50 Hz	$45-60 \mathrm{~Hz}$
Power consumption	approx. 1 VA	
Power reserve	-	150 h battery
Charge time	-	70 h
Accuracy	Network synchronisation	$\pm 2.5 \mathrm{sec} . /$ day at $20^{\circ} \mathrm{C}$
Minimum switch-on duration - Daily program - Weekly program	$\begin{gathered} 30 \mathrm{~min} \\ 3 \mathrm{~h} \end{gathered}$	
Programming Daily program -Weekly program	$\begin{gathered} 30 \mathrm{~min} \\ 3 \mathrm{~h} \\ \hline \end{gathered}$	
Manual switch	Continuous OFF / clock operations / continuously ON	
Contacts	1 CO contact	
Contact power - with ohmic load cos. $\varphi=1$ - with inductive load cos. $\varphi=0.6$	$\begin{gathered} 16 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \mu \\ 4 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \end{gathered}$	
For incandescent lamps	1350 W	
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	
Protection class	11 acc. to EN 60335-1	
Degree of protection	IP20 acc. to EN 60529	

DIGITAL TIMER
$230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 16 \mathrm{~A}$
1 channel, 50 storage places
2 channels, 50 storage places
Program 24 h, 7 days
2 M

1 channel	DZ201	170	1
2 channels	DZ302	170	1

Technical data / Typ	DZ201	DZ302
Operating voltage	$220-240 \mathrm{~V} / 50-60 \mathrm{~Hz}$	
Power input up to $230 \mathrm{~V} \sim$ (AC)	5 VA	
Switching capacity AC Ohmic load (VDE, IEC) Inductive load cos. φ 0,6 Incandescent lamp load	$\begin{gathered} 16 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \\ 8 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \\ 1000 \mathrm{~W} \end{gathered}$	
Switching capacity DC $24 \mathrm{~V}-$ 50 V - 220 V-	800 mA 300 mA 150 mA	
Switching output	Floating	
Switching contacts	1 CO contact	2 CO contact
Ambient temperature	$\left.-25^{\circ} \mathrm{C}{ }^{*}\right) \ldots+55^{\circ} \mathrm{C}$	
Protection class	11 acc. to EN 60335-1	
Accuracy	type $\pm 1 \mathrm{~s} /$ day when $+20^{\circ} \mathrm{C}$	
Power reserve	3 years ex works for $+20^{\circ} \mathrm{C}$	
Shortest switching time	1 min	
Programmable	1 min	
Storage places	50	
Manual switch	Automatic / pre-selection Fix ON/ Fix OFF	
Block formation of week days	Free assignment	
Display switch state	Yes	
Daylight saving time option	automatic / free selection / off	
Max. conductor cross section	$4 \mathrm{~mm}^{2}$	
Type of connection	Captive \pm screw terminals	
Sealable	Yes	
Programming	Menu in 15 languages	

*) for limited display functions

DIN-RAIL PANEL PRODUCTS

Transformers

SAFETY BELL
TRANSFORMER
$230 \mathrm{~V} \sim 50 \mathrm{~Hz}$
U/I secondary
8-12 V / 1-0.67 A
Short-circuit proof with PTC
2 M

8 VA	KT08	211	1

SAFETY BELL
TRANSFORMER
$230 \mathrm{~V} \sim 50 \mathrm{~Hz}$
U/I secondary
16 VA $8-12-24$ V / 1.3-1.3-0.67 A
24 VA 8-12-24 V / 2-2-1 A
Short-circuit proof with PTC
3 M

16 VA	KT16	537	1
24 VA	KT24	758	1

SAFETY TRANSFORMER

$230 \mathrm{~V} \sim 50 \mathrm{~Hz}$
U/I secondary 12-12 V/ 1.67-1.67 A
Parallel circuit $12 \mathrm{~V} / 3.3 \mathrm{~A}$
Series circuit $24 \mathrm{~V} / 1.67 \mathrm{~A}$
Short-circuit proof with PTC
3 M

40 VA	ST40	790	1

SAFETY TRANSFORMER
$230 \mathrm{~V} \sim 50 \mathrm{~Hz}$
U / I secondary $12-12 \mathrm{~V} / 2.63-2.63 \mathrm{~A}$
Parallel circuit $12 \mathrm{~V} / 5.25 \mathrm{~A}$
Series circuit $24 \mathrm{~V} / 2.63 \mathrm{~A}$
Short-circuit proof with PTC
6 TE

[^0]: Wiring diagram
 Twilight switch
 with separate light collector

